您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > OTN技术发展与应用趋势
OTN技术发展与应用趋势一、OTN技术发展背景随着网络业务对带宽的需求越来越大,运营商和系统制造商一直在不断地考虑改进业务传送技术的问题。数字传送网的演化也从最初的基于T1/E1的第一代数字传送网,经历了基于SONET/SDH的第二代数字传送网,发展到了目前以OTN为基础的第三代数字传送网。第一、二代传送网最初是为支持话音业务而专门设计的,虽然也可用来传送数据和图像业务,但是传送效率并不高。相比之下,第三代传送网技术,从设计上就支持话音、数据和图像业务,配合其他协议时可支持带宽按需分配(BOD)、可裁剪的服务质量(QoS)及光虚拟转网(OVPN)等功能。在二十世纪末确认了未来传输网的基本特征有:一、高可靠性:为不同用户提供可以保证的带宽速率;二、波长/子波长调度:SDH时隙交换+点到点DWDM→波长/子波长调度;三、智能性:传送平面,网管平面、控制平面、网络规划系统;四、三超:超高速率、超大容量、超长距离。光传送网面向IP业务、适配IP业务的传送需求已经成为光通信下一步发展的一个重要议题。光传送网从多种角度和多个方面提供了解决方案,在兼容现有技术的前提下,由于SDH设备大量应用,为了解决数据业务的处理和传送,在SDH技术的基础上研发了MSTP设备,并已经在网络中大量应用,很好地兼容了现有技术,同时也满足了数据业务的传送功能。但是随着数据业务颗粒的增大和对处理能力更细化的要求,业务对传送网提出了两方面的需求:一方面传送网要提供大的管道,这时广义的OTN技术(在电域为OTH,在光域为ROADM)提供了新的解决方案,它解决了SDH基于VC-12/VC4的交叉颗粒偏小、调度较复杂、不适应大颗粒业务传送需求的问题,也部分克服了WDM系统故障定位困难,以点到点连接为主的组网方式,组网能力较弱,能够提供的网络生存性手段和能力较弱等缺点;另一方面业务对光传送网提出了更加细致的处理要求,业界也提出了分组传送网的解决方案,目前涉及的主要技术包括T-MPLS和PBBTE等。在此要求下,1998年国际电信联盟电信标准化部门(ITU-T)正式提出了OTN的概念。从其功能上看,OTN在子网内可以以全光形式传输,而在子网的边界处采用光-电-光转换。这样,各个子网可以通过3R再生器联接,从而构成一个大的光网络,因此,OTN可以看作是传送网络向全光网演化过程中的一个过渡应用。二、OTN的概念与特点OTN(光传送网,OpticalTransportNetwork),是以波分复用技术为基础、在光层组织网络的传送网,是下一代的骨干传送网。OTN通过ROADM技术、OTH技术、G.709封装和控制平面的引入,将解决传统WDM网络无波长/子波长业务调度能力、组网能力弱、保护能力弱等问题。OTN将是未来最主要的光传送网技术,随着ULH(超长跨距DWDM技术)的发展,使得DWDM系统的无电中继传输距离达到几千公里。ULH的发展与OTM技术的发展相结合,将可以进一步扩大OTN的组网级力,实现在长途干线中的OTN子网部署,减少OTN子网之间的O/E/O连接,提高DWDM系统的传输效率。OTN的技术特色:1、网络范畴的扩展:OTN范畴包含了光层网络和电层网络;2、大颗料的复用、交换和配置:OTN的带宽颗粒是ODUk(k=1、2、3),它们的速率分别为2.5Gb/s,10Gb/s,40Gb/s;3、强大的网络管理功能:它有丰富的开销管理;4、多层嵌套的串联连接监视(TCM)功能:TCM1……TCM6;5、支持前向纠错(FEC)能力:这意味着可以传输更远的距离。随着电信网向分组化和宽带化发展,ALL-IP已经成为业务网演进的趋势。根据预测,在未来5年内,带宽将以每年50%以上的速度增长,2010年骨干网截面带宽流量将达到50T以上,其中97%以上为数据流量。带宽流量的飞速增长以及业务的All-IP趋势驱动光传送网进入转折期。作为基础承载网的光传送网,如何顺应All-IP的发展趋势,高效承载IP业务,同时降低网络建设和运维成本,成为运营商在传送网建设中最关注的问题。一个高质量、配置灵活、具有高生存性的传送网已经成为运营商的迫切需求。随着IP承载网所需的电路带宽和颗粒度的不断增大,以VC调度为基础的SDH网络首先在扩展性和效率方面呈现出了明显不足,在光层上直接承载IP的扁平化架构已经成为大势所趋。IPoverWDM组网架构对光层设备提出了新的需求,原本由SDH网络完成的组网、端到端电路监控管理和保护功能将逐渐由WDM层面承担。此外,数据业务发展的不确定性要求光层网络具备更多的智能性,以便在网络拓扑及业务分布发生变化时能够快速响应,实现业务的灵活调度。三、OTN关键技术1.OTN网络结构按照OTN技术的网络分层,可分为光通道层、光复用段层和光传送段层三个层面。另外,为了解决客户信号的数字监视问题,光通道层又分为光通路净荷单元(OPU)、光通道数据单元(ODUk)和光通道传送单元(OTUk)三个子层,类似于SDH技术的段层和通道层。如下图所示:客户层(IP/SDH/...)OCH光通道层OMS光复用段层OTS光传送段层OPUkODUkOTUkOPU光通路净荷单元ODU光通路数据单元OTU光通路传送单元OCH光信道OH客户信号OHOHFEC2、G.709:定义了OTN帧结构、各个层网络的开销功能,及OTN的映射、复用、虚级联。其地位类似于SDH体制的G.707。当OTU帧结构完整(OPU、ODU和OTU)时,ITUG.709提供开销所支持的OAM&P功能。OTN规定了类似于SDH的复杂帧结构OTN有着丰富的开销字节用于OAMOTN设备具备和SDH类似的特性,支持子速率业务的映射、复用和交叉连接、虚级联从客户业务适配到光通道层(OCh),信号的处理都是在电域内进行,包含业务负荷的映射复用、OTN开销的插入,这部分信号处理处于时分复用(TDM)的范围。从光通道层(OCh)到光传输段(OTS),信号的处理是在光域内进行,包含光信号的复用、放大及光监控通道(OOS/OSC)的加入,这部分信号处理处于波分复用(WDM)的范围。G.959.1定义了简化功能光传送模块的物理接口,分别是单跨距单波长接口(OTM-0.1/2.5G,OTM-0.2/10G和OTM-0.3/40G)及单跨距16波长接口(OTM-16r.1/2.5G,OTM-16r.2/10G),物理接口的标准化使得域间互通成为可能。完全功能光传送模块(OTM-n.m)尚没有统一的标准,因为这种接口定义在光透明域内部,一般是同一设备商所提供的网元组成的网络,而设备制造商通常有自己的物理层工程规范包括传输技术、光学参数、波长数目等指标。另外,不同设备制造商使用不同的OSC信息结构,及光通道传送单元(OTUk[V]),这使得不同设备制造商的设备难以在完全功能光传送模块这一层上互通。在纯粹的波分复用传送系统中,客户业务的封装及G.709OTN开销插入一般都是在波长转换盘上(OpticalTranslationUnit)完成的,这些过程包含从Client层到OCh(r)层的处理。输入信号是以电接口或光接口接入的客户业务,输出是具有G.709OTUk[V]帧格式的WDM波长。OTUk称为完全标准化的光通道传送单元,而OTUkV则是功能标准化的光通道传送单元。G.709对OTUk的帧格式有明确的定义,如下图所示:帧定位开销OTUk开销ODUk开销OPUK开销OPUk载荷OTUkFEC开销178141516173824382540801234需要指出的是,对于不同速率的G.709OTUk信号,即OTU1,OTU2,和OTU3具有相同的帧尺寸,即都是4´4080个字节,但每帧的周期是不同的,这跟SDH的STM-N帧不同。SDHSTM-N帧周期均为125微妙,不同速率的信号其帧的大小是不同的。G.709已经定义了OTU1,OTU2和OTU3的速率,关于OTU4速率的制定还在进行中,尚未最终确定。如下表所示:当G.709OTN信号经过OTN网络节点接口(NNI)或OTN用户-网络接口(UNI)时,OTN的开销就应当被适当终结和再生,图5显示了G.709OTN信号通过OTNNNI时开销字节的终结情况。标明绿色的字节是透传的开销。标明红色的字节是需要终结和再生的开销。标明黄色的是基于协商而决定终结或透传的开销。标明蓝色的EXP字节是用于自用目的的开销,G.709对其不加以标准化,用户或网络运营商可自行决定如何在自己网络内部运用这个开销,这个开销字节有可能在NNI被覆盖。标明兰绿两色的是跟串连监控(TCM)相关的开销(下面会谈到),根据配置决定终结或透过。当G.709OTN信号通过OTNUNI时,FTFL(故障类型及故障地点)字节也要终结和再生,其余字节的处理跟信号通过NNI时相同。当非G.709OTN信号如客户10GbELAN信号通过UNI时,则所有的OTN开销及FEC都必须终结。对G.709OTN承载客户业务如Ethernet、ATM和SDH信号的最基本应用中,至少以下开销字节需要处理:1)、OPUkClientSpecific,用来存放速率调整控制字节或虚级联开销字节。2)、OPUkPayloadStructureIdentifier(PSI),用来监测客户信号类型或负荷结构是否与预期的一致。3)、ODUkPathMonitoring(PM),用来监测通道层的踪迹字节(TTI)、负荷误码(BIP-8)、远端误码指示(BEI)、反向缺陷指示(BDI)及判断当前信号是否是维护信号(ODUk-LCK,ODUk-OCI,ODUk-AIS)等。4)、OTUkSectionMonitoring(SM),用来监测段层的踪迹字节(TTI)、误码(BIP-8)、远端误码指示(BEI)及反向缺陷指示(BDI)等。5)、FrameAlignment(FAS,MFAS),帧及复帧定位开销字节。3、ROADM技术ROADM是一种类似于SDHADM光层的网元,它可以在一个节点上完成光通道的上下路(Add/Drop),以及穿通光通道之间的波长级别的交叉调度。它可以通过软件远程控制网元中的ROADM子系统实现上下路波长的配置和调整。目前,ROADM子系统常见的有三种技术:平面光波电路(PlanarLightwaveCircuits,PLC)、波长阻断器(WavelengthBlocker,WB)、波长选择开关(WavelengthSelectiveSwitch,WSS)。三种ROADM子系统技术,各具特点,采用何种技术,主要视应用而定。根据对北美运营商的统计,超过70%的需求仍然是2维的应用,而只有约10%的ROADM节点,将会采用4维或以上的节点。因此,基于WB/PLC的ROADM,可以充分利用现有的成熟技术,对网络的影响最小,易于实现从FOADM到2维ROADM的升级,具有极高的成本效益。而基于WSS的ROADM,可以在所有方向提供波长粒度的信道,远程可重配置所有直通端口和上下端口,适宜于实现多方向的环间互联和构建Mesh网络。四、OTN的网络生存性1、光传送网OTN生存性方面的保护恢复技术G.872为光传送网OTN的分层结构作了定义,细分为光通路层(OCh),光复用段层(OMS)和光传输段层(OTS)。OCh层为各种数字化的用户信号提供接口,它为透明的传送SDH、PDH、ATM、IP等业务信号提供点到点的以光通路为基础的组网功能;OMS层为经DWDM复用的多波长信号提供组网功能;OTS层经光接口与传输媒质相连,它提供在光介质上传输光信号的功能。OTN核心设备和业务的保护恢复的主要载体是光交叉连接设备OXC和光分插复用设备OADM,与SDH的最大区别在于SDH是基于时分复用的对时隙进行操作的“数字网络”,而OTN处理的对象是光载波,也就是模拟的“频率时隙”或“光通道波长”,是一个“模拟传送网络”。但是OTN和SDH网络结构一样也是面向连接的网络,所使用的网络技术和网络单元极为相似,因此它们的保护恢复技术基本相似,主要有以下几种;①、光复用段OMS保护倒换方案,其原理是当工
本文标题:OTN技术发展与应用趋势
链接地址:https://www.777doc.com/doc-5912503 .html