您好,欢迎访问三七文档
一、电路问题1、确定电源:首先判断产生电磁感应现象的那一部分导体(电源),其次利用或求感应电动势的大小,利用右手定则或楞次定律判断电流方向。tnEsinBLvE2、分析电路结构,画等效电路图3、利用电路规律求解,主要有欧姆定律,串并联规律等电磁感应与电路知识的综合应用,主要有例1、在磁感应强度为B=0.4T的匀强磁场中放一个半径r0=50cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103rad/s逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R0=0.8Ω,外接电阻R=3.9Ω,如所示,求:(1)每半根导体棒产生的感应电动势.(2)通过电阻的电流方向(3)当电键S接通和断开时两电表示数(假定RV→∞,RA→0).50V向上50V,048.75V,12.5A练习如图所示,圆环a和b的半径之比R1∶R2=2∶1,且是粗细相同,用同样材料的导线构成,连接两环导线的电阻不计,匀强磁场的磁感应强度始终以恒定的变化率变化,那么,当只有a环置于磁场中与只有b环置于磁场中的两种情况下,AB两点的电势差之比为多少?二、图象问题1、定性或定量地表示出所研究问题的函数关系2、在图象中E、I、B等物理量的方向是通过正负值来反映3、画图象时要注意横、纵坐标的单位长度定义或表达【例2】匀强磁场磁感应强度B=0.2T,磁场宽度L=3m,一正方形金属框边长ab==1m,每边电阻r=0.2Ω,金属框以v=10m/s的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求:(1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t图线(2)画出ab两端电压的U-t图线三、综合例析【例3】据报道,1992年7月,美国“阿特兰蒂斯”号航天飞机进行了一项卫星悬绳发电实验,实验取得了部分成功.航天飞机在地球赤道上空离地面约3000km处由东向西飞行,相对地面速度大约6.5×103m/s,从航天飞机上向地心方向发射一颗卫星,携带一根长20km,电阻为800Ω的金属悬绳,使这根悬绳与地磁场垂直,做切割磁感线运动.假定这一范围内的地磁场是均匀的.磁感应强度为4×10-5T,且认为悬绳上各点的切割速度和航天飞机的速度相同.根据理论设计,通过电离层(由等离子体组成)的作用,悬绳可以产生约3A的感应电流,试求:(1)金属悬绳中产生的感应电动势;(2)悬绳两端的电压;(3)航天飞机绕地球运行一圈悬绳输出的电能(已知地球半径为6400km).E=Blv=5.2×103VU=E-Ir=2.8×103VE=UIt=7.6×107J(电离层)命题意图:考查考生信息摄取、提炼、加工能力及构建物理模型的抽象概括能力.求解策略变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零.【例4】(2001年上海卷)半径为a的圆形区域内有均匀磁场,磁感强度为B=0.2T,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m,金属环上分别接有灯L1、L2,两灯的电阻均为R=2Ω,一金属棒MN与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时(如图所示)MN中的电动势和流过灯L1的电流。(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB/Δt=4T/s,求L1的功率。E1=0.4VI1=E1/R=0.8/2=0.4AP1=(E2/2)2/R=1.28×102W【例5】如图所示,竖直向上的匀强磁场,磁感应强度B=0.5T,并且以=0.1T/s在变化,水平轨道电阻不计,且不计摩擦阻力,宽0.5m的导轨上放一电阻R0=0.1Ω的导体棒,并用水平线通过定滑轮吊着质量M=0.2kg的重物,轨道左端连接的电阻R=0.4Ω,图中的l=0.8m,求至少经过多长时间才能吊起重物.命题意图:考查理解能力、推理能力及分析综合能力t=495s1、利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题2、应用牛顿第二定律解决导体切割磁感线运动的问题。3、应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。4、应用能的转化和守恒定律解决电磁感应问题。电磁感应与力学知识的综合应用,主要有F=BIL临界状态v与a方向关系运动状态的分析a变化情况F=ma合外力运动导体所受的安培力感应电流确定电源(E,r)解题的基本思路:一、电磁感应中的动力学问题例1、水平放置的金属框架abcd,宽度为0.5m,匀强磁场与框架平面成30°角,如图所示,磁感应强度为0.5T,框架电阻不计,金属杆MN置于框架上可以无摩擦地滑动,MN的质量0.05kg,电阻0.2Ω,试求当MN的水平速度为多大时,它对框架的压力恰为零,此时水平拉力应为多大?v=3.7m/s,F=0.29N1、受力分析(截面图)2、运动过程的分析(a,V)练习1、如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B及一根质量为m的金属杆从轨道上由静止滑下。经过足够长的时间后,金属杆的速度会趋近于一个最大速度值vm,则(A)如果B增大,vm将变大(B)如果α变大,vm将变大(C)如果R变大,vm将变大(D)如果m变小,vm将变大BC22sinmmgRBL电磁感应过程体现了能量的转化和守恒规律。分析电磁感应问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解。二、电磁感应中的能量、动量问题例2、如图所示位于竖直平面的正方形平面导线框abcd,边长为L=10cm,线框质量为m=0.1kg,电阻为R=0.5Ω,其下方有一匀强磁场区域,该区域上、下两边界间的距离为H(HL),磁场的磁感应强度为B=5T,方向与线框平面垂直。今线框从距磁场上边界h=30cm处自由下落,已知线框的dc边进入磁场后,ab边到达上边界之前的某一时刻线框的速度已达到这一阶段的最大值,问从线框开始下落到dc边刚刚到达磁场下边界的过程中,磁场作用于线框的安培力做的总功是多少?(g=10m/s2)W=-0.2J例3、如图所示,水平面上固定有平行导轨,磁感应强度为B的匀强磁场方向竖直向下。同种合金做的导体棒ab、cd横截面积之比为2∶1,长度和导轨的宽均为L,ab的质量为m,电阻为r,开始时ab、cd都垂直于导轨静止,不计摩擦。给ab一个向右的瞬时冲量I,在以后的运动中,cd的最大速度vm、最大加速度am、产生的电热各是多少?Badbc22223mBLIamrvm=2I/3mQ=I2/9m当cd的速度为最大速度的一半时,加速度为多少?例4、如图所示,abcd和a/b/c/d/为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。ab、a/b/间的宽度是cd、c/d/间宽度的2倍。设导轨足够长,导体棒ef的质量是棒gh的质量的2倍。现给导体棒ef一个初速度v0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?aa/bb/dd/cc/efgh102012,33vvvv“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。能的观点:机械能守恒与动能定理动量的观点:动量守恒与动量定理牛顿定律的观点:牛顿三大定律与运动学公式练习1、如图所示,一根很长的光滑水平轨道,它的一端接一光滑的圆弧形轨道,在水平轨道的上方有一足够长的光滑绝缘杆MN,杆上挂一铝环P,在弧形轨道上距水平轨道h处,无初速释放一磁铁A,A下滑至水平轨道时恰好沿P环的中心轴线运动,设A的质量为m,P的质量为M,求金属环P获得的最大速度和电热。2mmghvMmMmghQMm练习2、(04年广东物理卷)(15分)如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为l,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m1、m2和R1、R2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度v0沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。M21NPQv0201222[()]gmgPmgvRRBl练习3、(04全国理综)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2,x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R.F为作用于金属杆x1y1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.a1x1b1c1d1x2y2d2c2b2a2y1F12122221()()()FmmgPRmmgBll21221()[]()QFmmgPRBll练习4、匀强磁场的磁感强度为B,方向竖直向上,在磁场中有一个总电阻为R、每边长为L的正方形金属框abcd,其中ab、cd边质量均为m,其他两边质量不计,cd边装有固定的水平轴,现将金属框从水平面位置无初速度释放,如图所示。若不计一切摩擦,金属框经时间t刚好到达竖直面位置a′b′cd。(1)在图上标出ab边到达最低位置时感应电流的方向。(2)求在时间t内流过金属框的电量。(3)若在时间t内金属框产生的焦耳热为Q,求ab边在最低位置时受的磁场力多大?(1)感应电流方向由a′指向b′(或由a指b)2(2)/qBLR2212(3)2qQFBLgLRm
本文标题:09高二物理课件
链接地址:https://www.777doc.com/doc-5918457 .html