您好,欢迎访问三七文档
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写):B题我们的参赛报名号为(如果赛区设置报名号的话):79所属学校(请填写完整的全名):河南理工大学参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)日期:2014年9月3日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):1摘要本文针对戒烟和各种相关因素关系,解决影响戒烟成功的因素有哪些的问题,我们利用Excel,spss,Matlab软件对相关数据进行分析,利用主成分分析法、层次分析法建立模型,并进行可靠性检验,得到影响戒烟成功的重要因素,对有志于戒烟的人士提供戒烟对策和建议。针对问题一,首先观察数据发现数据残缺,运用spss中缺失值替换的线性插值法将缺失数据补充完整。然后求出在不同年龄段、不同性别、不同调整CO浓度下、不同每日抽烟数的条件下的发病累加率,并运用Excel,Matlab,Spss的等软件做出图像,结合图像对发病累加率的分布进行分析,得到累加发病率的基本趋势为随着每日抽烟数和调整CO浓度的增加而提高,男性比女性的累加发病率略低。针对问题二,首先用spss做其它各变量与戒烟天数的相关性分析,得到显著性(双侧)值,CO浓度和戒烟天数0.01水平显著相关,距离最后一支烟的分钟数和调整的CO浓度与戒烟天数0.05水平显著相关;然后,根据题意,CO浓度和距离最后一支烟的分钟数共同影响调整的CO浓度;可以得到每日抽烟数和调整的CO浓度会影响戒烟时间(天数)长短。最后,对相关变量的数据进行分组,在不同区间对戒烟天数求平均值,然后用spss回归分析中曲线估计对数据进行拟合,再用MATLAB拟合求回归方程中系数的置信区间来分析拟合效果。得到每日抽烟和戒烟天数的回归方程为33323008.0760.0711.22633.278xxxy,2R=0.948,F=12.038,Sig=0.078,可得拟合效果较好;调整的CO浓度和戒烟天数的回归方程为34824610784.110436.6306.117xxy,2R=0.785,F=12.799,Sig=0.005,拟合的较好。针对问题三,我们认为CO浓度和距抽最后一支烟的分钟数是来控制调整CO浓度的,这两个因素可以用调整CO浓度说明,因此在考虑戒烟成功主要因素时没有针对这两个因素讨论,那么可以假定戒烟成功受年龄,性别,每日抽烟数以及调整CO浓度影响。就这四个因素建立层次分析,探究每个因素对戒烟成功的影响。先用主成分分析法对影响因素探究,再运用层次分析法,根据主成分分析得到的累计贡献率来建立判断矩阵,并算出各成分的权向量。结果显示影响戒烟成功的因素主要为每天抽烟数,调整CO浓度和年龄。其比重分别为37.15%,25.00%,23.22%。通过一致性检验,判断矩阵具有满意一致性,可以为模型提供可靠分析。针对问题四,我们根据前三问所得结果向有志于戒烟的人士提供相应的戒烟对策及建议,撰写的报告具体见5.4问题四的求解。关键字:线性插值法相关性分析回归分析主成分分析层次分析法2一、问题的重述众所周知,吸烟不仅危害自身健康,而且由此引起的被动吸烟更是危害公众身心健康的主要原因。为此,如何帮助相关人士摆脱烟瘾的困扰也就成为一个重要的研究课题。本文研究数据涉及234人,他们都自愿表示戒烟但还未戒烟。在他们戒烟的这一天,测量了每个人的CO(一氧化碳)水平并记下他们抽最后一支烟到CO测定时间.。CO的水平提供了一个他们先前抽烟数量的客观指标,但其值也受到抽最后一支烟的时间的影响,因此抽最后一支烟的时间可以用来调整CO的水平。记录下研究对象的性别、年龄及自述每日抽烟支数。这个调查跟踪1年,考察他们一直保持戒烟的天数,由此估计这些人中再次吸烟的累加发病率,也就是原吸烟者戒烟一段时间后又再吸烟的比例.其中假设原烟民戒烟的可信度是很低的(更恰当地说多数是再犯者)戒烟天数是从0到他(她)退出戒烟或研究截止时间(1年)的天数。假定他们全部没有人中途退出研究。请回答下列问题:1)试分析上述234人中再次吸烟的累加发病率分布情况(如不同年龄段、不同性别等因素下的累加发病率分布情况)。2)你认为年龄、性别、每日抽烟支数及调整的CO浓度等因素会影响戒烟时间(天数)长短吗?如果影响请利用附录中的数据,分别给出戒烟时间与上述你认为有影响的因素之间的定量分析结果。3)请利用附录中的数据建立适当的数学模型,讨论影响戒烟成功的主要因素有哪些,并对你的模型进行可靠性分析。4)请根据你的模型,撰写一篇500字左右的短文,向有志于戒烟的人士提供戒烟对策和建议。二、模型的假设1、原烟民戒烟天数不足365天的数据都是可靠的;2、原烟民戒烟的可信度很低,可以说他们多数是再犯者;3、自愿者中全部没有人中途退出研究。三、符号说明符号符号说明1x年龄21x性别3x每日抽烟数4x调整的CO浓度y戒烟天数w权向量CI一致性指标IR随机一致性指标CR一致性比率max最大特征根四、问题的分析4.1问题一的分析针对问题一,首先对缺失数据进行补充,然后求出在不同因素下,不同年龄段、不同性别、不同每日抽烟数、不同调整CO浓度条件下的累加发病率的分布情况,并作出图表,进行分析。34.2问题二的分析针对问题二,首先对其它各变量与戒烟天数的相关性分析,得到和戒烟天数相关的变量,然后根据题意,得到会对戒烟天数长短的变量。对相关变量的数据进行分组处理,求不同区间内戒烟天数的平均值,把组距中间值作为那一组的数值,用spss和MATLAB对数据进行处理得到相关变量和戒烟天数的定量分析结果。4.3问题三的分析我们认为CO浓度和距抽最后一支烟的分钟数是来控制调整CO浓度的,这两个因素可以用调整CO浓度说明,因此在考虑戒烟成功主要因素时没有针对这两个因素讨论,那么可以假定戒烟成功受年龄,性别,每日抽烟数以及调整CO浓度影响。就这四个因素建立层次分析,探究每个因素对戒烟成功的影响。五、模型的建立与求解5.1问题一的求解5.1.1问题一模型的建立观察附录可以发现,附录中所给数据缺失,为了更加全面的进行分析,首先我们使用spss中缺失值分析命令对于数据进行分析,结果如下。表5.1.1列表均值案例数目Min_lastLogCOadjCO224177.311397.48257.37列表协方差Min_lastLogCOadjCOMin_last91053.229LogCOadj-27.30741300.914CO-20993.63522198.70818998.861回归均值aMin_lastLogCOadjCO179.581399.76258.04a.将随机选中的案例的残差添加到各个估计。列表相关性Min_lastLogCOadjCOMin_last1LogCOadj.0001CO-.505.7921回归协方差aMin_lastLogCOadjCOMin_last94546.889LogCOadj-957.70840165.315CO-20909.16621649.54018918.215a.将随机选中的案例的残差添加到各个估计。4所给数据缺失率为0.0446,缺失率较小,可以利用spss进行补充,然后使用缺失值替换命令进行数据的补充,经过对已有数据的分析,决定使用线性差值法进行补充,补充后数据见附表。为了直观得了解所有234人的总体戒烟情况,作出如下散点图:图5.1.1Day_abs0501001502002503003504000100200300400IdDay_absDay_abs由图5.1.1看出,被调查的234人中大多数经过很短时间后又再次抽烟,只有少数人戒烟天数达到365天,只占总人数的14.10%,本文假设在研究截止时间内没有再抽烟的烟民戒烟成功,所以累加发病率的具体定义为戒烟天数小于365的烟民数量占研究样本总人数的比例,本文据此对在不同性别、年龄、每日抽烟数、调整后CO浓度的情况下对累加发病率进行比较和分析。首先运用spss做出男性与女性吸烟者的戒烟天数频率分布图,并求出男性与女性的累加发病率,做出图像,图表如下。图5.1.2表5.1.2回归相关性aMin_lastLogCOadjCOMin_last1LogCOadj-.0161CO-.494.7851a.将随机选中的案例的残差添加到各个估计。5性别成功戒烟人数总人数累加发病率男171100.845女161240.871图5.1.30.8450.8710.8300.8350.8400.8450.8500.8550.8600.8650.8700.875累加发病率系列1系列10.8450.871男女由图5.1.2看出男性与女性再次吸烟的累加发病率分布情况相差不大,而由表5.1.1可以发现男性累加发病率为0.845,略低于女性的0.871。年龄:通过对所给数据进行分析可以得到参与研究人员的年龄跨度为22—72,所以本文将所有参与研究人员的年龄分为6段,分别为20—29、30—39、40—49、50—59、60—69、70—79,经过统计可以得到不同年龄段的累加发病率的分布,如图所示。表5.1.3年龄段成功戒烟人数总人数累加发病率20-294440.9130-3911640.8340-498570.8650-597470.8560-691170.9470-79150.80图5.1.4累加发病率0.910.830.860.850.940.800.700.750.800.850.900.951.0020-2930-3940-4950-5960-6970-79年龄段累加发病率累加发病率6通过表5.1.3和图5.1.1可以看出30-59年龄段的累加发病率较低,70岁以上的被研究者累加发病率最低,60-69年龄段的被研究者的累加发病率最高。每日抽烟数:首先用Matlab做出每日抽烟数跟戒烟天数的散点图图5.1.5通过对数据的分析可发现每日抽烟数的跨度为2—90,所以将每日抽烟数分为7个档次,分别为1—10、11—20、31—40、41—50、51—60、60以上,求出其累加发病率,并做成图表,如下。表5.1.4每日抽烟数戒烟人数总人数累加发病率1—104170.76511—2010810.87721—3012720.83331—404370.89241—50180.87551—60071.00060以上220.000图5.1.60.7650.8770.8330.8920.8751.0000.0000.0000.2000.4000.6000.8001.0001.2001—1011—2021—3031—4041—5051—6060以上每日抽烟数/根累加发病率系列1通过观察图表可得,每日抽烟数60
本文标题:数学建模-戒烟问题
链接地址:https://www.777doc.com/doc-5919614 .html