您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 往来文书 > 高三数学复习---球的切、接、截面问题(有答案)
11.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.4.三棱锥S﹣ABC的顶点都在同一球面上,且,则该球的体积为()A.B.C.16πD.64π5.三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为()A.16πB.32πC.48πD.64π6.四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,则球O截直线EF所得弦长为()A.6B.12C.6D.67.已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.8.将长宽分别为3和4的长方形ABCD沿对角线AC折起直二面角,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的表面积为()A.25πB.50πC.5πD.10π9.已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为()A.B.C.D.10.在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB的面积分别为、、,则该三棱锥外接球的表面积为()A.2πB.4πC.6πD.24π11.一个四面体A﹣BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的表面积为()12.已知Rt△ABC的顶点都在半径为4的球O面上,且AB=3,BC=2,∠ABC=,则棱锥O﹣ABC的体积为()A.B.C.D.13.在正四棱锥S﹣ABCD中,侧面与底面所成角为,则它的外接球的半径R与内径球半径r的比值为()A.5B.C.10D.214.已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,,则三棱锥S﹣AOB的高为()A.B.C.D.115.如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为()A.B.3πC.D.2π16.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积×高)时,其高的值为()A.B.C.D.17.直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于_________.18.正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为_________.19.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是_________.20.已知四棱锥P﹣ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则等于_________.21.已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为_________.22.在半径为13的球面上有A,B,C三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC的距离为_________;(2)过A,B两点的大圆面与平面ABC所成二面角为(锐角)的正切值为_________.23.正三棱锥P﹣ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为2,则正三棱锥的底面边长是_________.24.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r=_________.截面问题一.填空题(共8小题)31.过正三棱锥一侧棱及其半径为R的外接球的球心O所作截面如图,则它的侧面三角形的面积是__.2.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为_________(只填写序号).3.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是_________.4.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为_________.5.如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为_________.6.已知正方体ABCD﹣A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是_________.7.已知空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,其截面圆心分别为M,N,则线段|MN|的长度最大值为_________.8.球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O的截面,球心O到截面的距离为4,则该球的体积为_________.9.设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?451.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()2.一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则这个球的表面积是()3.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为()4.三棱锥S﹣ABC的顶点都在同一球面上,且,则该球的体积为()A.B.C.16πD.64π5.三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为()6.四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,则球O截直线EF所得弦长为()点评:本题是基础题,考查空间想象能力,正四面体的外接球转化为正方体外接球,使得问题的难度得到降低,问题得到解决,注意正方体的对角线就是球的直径,也是比较重要的.7.已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()8.将长宽分别为3和4的长方形ABCD沿对角线AC折起直二面角,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的表面积为()69.已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为()10.在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB的面积分别为、、,则该三棱锥外接球的表面积为()11.一个四面体A﹣BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的表面积为()A.50πB.25πC.D.考点:球内接多面体;球的体积和表面积.菁优网版权所有专题:计算题;空间位置关系与距离.分析:由四面体A﹣BCD相对的棱长度相等,将其放置于长方体中,如图所示.由题意得该长方体的外接球就是四面体A﹣BCD的外接球,因此算出长方体的对角线长得到外接球的直径,利用球的表面积公式加以计算,可得四面体A﹣BCD的外接球的表面积.解答:解:将四面体A﹣BCD放置于长方体中,如图所示.∵四面体A﹣BCD的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A﹣BCD的外接球,∵AC=BD=3,AD=BC=4,AB=CD=5,∴长方体的对角线长为=5,可得外接球的直径2R=5,所以R=因此,外接球的表面积为S=4πR2=25π.故选:B点评:本题给出相对棱长相等的四面体,求它的外接球的表面积.着重考查了长方体的性质、长方体的对角线长公式和球的表面积公式等知识,属于中档题.12.已知Rt△ABC的顶点都在半径为4的球O面上,且AB=3,BC=2,∠ABC=,则棱锥O﹣ABC的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.菁优网版权所有专题:计算题;空间位置关系与距离.分析:先求AC的值,利用△ABC外接圆是球O的截面圆,球心O在平面ABC的射影点为AC的中点O′,求出OO′,即可求得棱锥O﹣ABC的体积.7解答:解:∵AB=3,BC=2,∠ABC=,∴AC=△ABC外接圆是球O的截面圆,球心O在平面ABC的射影点为AC的中点O′,此时OO′==∴棱锥O﹣ABC的体积为=故选A.点评:本题考查棱锥体积的计算,考查球的截面圆,属于基础题.13.在正四棱锥S﹣ABCD中,侧面与底面所成角为,则它的外接球的半径R与内径球半径r的比值为()A.5B.C.10D.考点:球内接多面体.菁优网版权所有专题:计算题;压轴题.分析:由题意通过侧面与底面所成角为,设出正四棱锥的底面边长,求出斜高,侧棱长,求出内切球的半径与正四棱锥底面边长的关系;利用外接球的球心与正四棱锥的高在同一条直线,结合勾股定理求出,外接球的半径与底面边长的关系,即可得到比值.解答:解:由于侧面与底面所成角为,可知底面边长与两个对面斜高构成正三角形,设底面边长为a,则斜高也为a,进而可得侧棱长为,高为四棱锥的内切球半径就是上述正三角形的内切圆半径为,其外接球球心必在顶点与底面中心连线上,半径为R,球心为O,顶点为P,底面中心为O1,底面一个顶点为B,则OB=OP,于是就有:(﹣R)2+()2=R2解得R=.所以两者的比为:.故选D点评:本题是中档题,考查学生的空间想象能力,计算能力推理能力.求出球的半径与正三棱柱的底面边长的关系,是本题的关键.14.已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,,则三棱锥S﹣AOB的高为()8A.B.C.D.1考点:球内接多面体;棱柱、棱锥、棱台的体积.菁优网版权所有专题:计算题;压轴题;空间位置关系与距离.分析:将三棱锥S﹣AOB的高,转化为C到平面AOB的距离,利用等体积法,即可求得结论.解答:解:∵球O的表面积为20π,∴球O的半径为,∵SC是球O的直径,∴三棱锥S﹣AOB的高等于C到平面AOB的距离,设为h∵AB=BC=2,,∴cosA==∴sinA=∴△ABC外接圆半径为=2∴O到平面ABC的距离为1∵,∴∴h=故选C.点评:本题考查三棱锥的高,考查三棱锥的体积公式,考查学生的转化能力,属于中档题.15.如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为()A.B.3πC.D.2π考点:球内接多面体;球的体积和表面积.菁优网版权所有专题:计算题;压轴题.分析:说明折叠后几何体的特征,求出三棱锥的外接球的半径,然后求出球的体积.解答:解:由题意平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC是外接球的直径,所以BC=,球的半径为:;所以球的体积为:=.故选A点评:本题是基础题,考查折叠问题,三棱锥的外接球的体积的求法,考查计算能力,正确球的外接球的半径是解题的关键.916.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积×高)时,其高的值为()A.B.C.D.考点:球内接多面体.菁优网版权所有专题:计算题;压轴题.分析:根据正六棱柱和球的对称性,球心O必然是正六棱柱上下底面中心连线的中点,作出过正六棱柱的对角面的轴截面即可得到正六棱柱的底面边长、高和球的半径的关系,在这个关系下求函数取得最值的条件即可求出所要求的量.解答:解:以正六棱柱的最大对角面作截面,如图.设球心为O,正六棱柱的上下底面中心分别为O1,O2,则O是O1,O2的中点.设正六棱柱的底面边长为a,高为2h,则a2+h2=9.正六棱柱的体积为,即,则,得极值点,不难知道这个极值点是极大值点,也
本文标题:高三数学复习---球的切、接、截面问题(有答案)
链接地址:https://www.777doc.com/doc-5942830 .html