您好,欢迎访问三七文档
1.3.3函数的最大(小)值与导数【学习要求】1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会用导数求某定义域上函数的最值.【学法指导】弄清极值与最值的区别是学好本节的关键.函数的最值是一个整体性的概念.函数极值是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义域上的情况,是对整个区间上的函数值的比较.填一填·知识要点、记下疑难点1.函数f(x)在闭区间[a,b]上的最值函数f(x)在闭区间[a,b]上的图象是一条连续不断的曲线,则该函数在[a,b]上一定能够取得最大值与最小值,函数的最值必在______处或________处取得.2.求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在(a,b)内的______;(2)将函数y=f(x)的各极值与________的函数值f(a),f(b)比较,其中最大的一个是______,最小的一个是______.端点极值点极值端点处最大值最小值研一研·问题探究、课堂更高效探究点一求函数的最值问题1如图,观察区间[a,b]上函数y=f(x)的图象,你能找出它的极大值、极小值吗?答f(x1),f(x3),f(x5)是函数y=f(x)的极小值;f(x2),f(x4),f(x6)是函数y=f(x)的极大值.研一研·问题探究、课堂更高效问题2观察问题1的函数y=f(x),你能找出函数f(x)在区间[a,b]上的最大值、最小值吗?若将区间改为(a,b),f(x)在(a,b)上还有最值吗?由此你得到什么结论?答函数y=f(x)在区间[a,b]上的最大值是f(a),最小值是f(x3).若区间改为(a,b),则f(x)有最小值f(x3),无最大值.研一研·问题探究、课堂更高效结论一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值,且最值必在端点处或极值点处取得.研一研·问题探究、课堂更高效问题3函数的极值和最值有什么区别和联系?答函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点处取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处取得必定是极值.研一研·问题探究、课堂更高效问题4怎样求一个函数在闭区间上的最值?答只要求出函数的各个极值和端点处的函数值,进行比较即可.研一研·问题探究、课堂更高效例1求下列函数的最值:(1)f(x)=2x3-12x,x∈[-2,3];(2)f(x)=12x+sinx,x∈[0,2π].解(1)f(x)=2x3-12x,∴f′(x)=6x2-12=6(x+2)(x-2),令f′(x)=0,解得x=-2或x=2.当x变化时,f′(x)与f(x)的变化情况如下表:x(-∞,-2)-2(-2,2)2(2,+∞)f′(x)+0-0+f(x)极大值极小值研一研·问题探究、课堂更高效所以函数f(x)的单调递增区间为(-∞,-2),(2,+∞).因为f(-2)=8,f(3)=18,f(2)=-82,f(-2)=82;所以当x=2时,f(x)取得最小值-82;当x=3时,f(x)取得最大值18.(2)f′(x)=12+cosx,令f′(x)=0,又x∈[0,2π],解得x=23π或x=43π.研一研·问题探究、课堂更高效当x变化时,f′(x),f(x)的变化情况如下表:x00,23π23π23π,43π43π43π,2π2πf′(x)+0-0+f(x)0极大值π3+32极小值23π-32π∴当x=0时,f(x)有最小值f(0)=0;当x=2π时,f(x)有最大值f(2π)=π.研一研·问题探究、课堂更高效小结(1)求函数的最值,显然求极值是关键的一环.但仅仅是求最值,可用下面简化的方法求得.①求出导数为零的点.②比较这些点与端点处函数值的大小,就可求出函数的最大值和最小值.(2)若函数在闭区间[a,b]上连续单调,则最大、最小值在端点处取得.研一研·问题探究、课堂更高效跟踪训练1求下列函数的最值:(1)f(x)=x3+2x2-4x+5,x∈[-3,1];(2)f(x)=ex(3-x2),x∈[2,5].解(1)∵f(x)=x3+2x2-4x+5,∴f′(x)=3x2+4x-4.令f′(x)=0,得x1=-2,x2=23.∵f(-2)=13,f23=9527,f(-3)=8,f(1)=4,∴函数f(x)在[-3,1]上的最大值为13,最小值为9527.研一研·问题探究、课堂更高效(2)∵f(x)=3ex-exx2,∴f′(x)=3ex-(exx2+2exx)=-ex(x2+2x-3)=-ex(x+3)(x-1),∵在区间[2,5]上,f′(x)=-ex(x+3)(x-1)0,即函数f(x)在区间[2,5]上单调递减,∴x=2时,函数f(x)取得最大值f(2)=-e2;x=5时,函数f(x)取得最小值f(5)=-22e5.研一研·问题探究、课堂更高效探究点二含参数的函数的最值问题例2已知a是实数,函数f(x)=x2(x-a).(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程.(2)求f(x)在区间[0,2]上的最大值.解(1)f′(x)=3x2-2ax.因为f′(1)=3-2a=3,所以a=0.又当a=0时,f(1)=1,f′(1)=3,所以曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0.(2)令f′(x)=0,解得x1=0,x2=2a3.当2a3≤0,即a≤0时,f(x)在[0,2]上单调递增,研一研·问题探究、课堂更高效从而f(x)max=f(2)=8-4a.当2a3≥2,即a≥3时,f(x)在[0,2]上单调递减,从而f(x)max=f(0)=0.当02a32,即0a3时,f(x)在0,2a3上单调递减,在2a3,2上单调递增,从而f(x)max=8-4a0a≤202a3,综上所述,f(x)max=8-4aa≤20a2.研一研·问题探究、课堂更高效小结由于参数的取值不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化.所以解决这类问题常需要分类讨论,并结合不等式的知识进行求解.研一研·问题探究、课堂更高效跟踪训练2已知函数f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.解f′(x)=3ax2-12ax=3ax(x-4),令f′(x)=0,得x1=0,x2=4(舍去).(1)当a0时,列表如下:x-1(-1,0)0(0,2)2f′(x)+0-f(x)-7a+bb-16a+b由表可知,当x=0时,f(x)取极大值,也就是函数在[-1,2]上的最大值,∴f(0)=3,即b=3.研一研·问题探究、课堂更高效又f(-1)=-7a+3,f(2)=-16a+3f(-1),∴f(2)=-16a+3=-29,∴a=2.(2)当a0时,同理可得,当x=0时,f(x)取极小值,也就是函数在[-1,2]上的最小值,∴f(0)=-29,即b=-29.又f(-1)=-7a-29,f(2)=-16a-29f(-1),∴f(2)=-16a-29=3,∴a=-2.综上可得,a=2,b=3或a=-2,b=-29.研一研·问题探究、课堂更高效探究点三函数最值的应用问题函数最值和“恒成立”问题有什么联系?答解决“恒成立”问题,可将问题转化为函数的最值问题.如f(x)0恒成立,只要f(x)的最小值大于0即可.对含参不等式的恒成立问题,求参数范围时,可先分离参数.研一研·问题探究、课堂更高效例3已知函数f(x)=(x+1)lnx-x+1.若xf′(x)≤x2+ax+1恒成立,求a的取值范围.解f′(x)=x+1x+lnx-1=lnx+1x,xf′(x)=xlnx+1,而xf′(x)≤x2+ax+1(x>0)等价于lnx-x≤a.令g(x)=lnx-x,则g′(x)=1x-1.当0<x<1时,g′(x)>0;当x≥1时,g′(x)≤0,x=1是g(x)的最大值点,∴g(x)≤g(1)=-1.综上可知,a的取值范围是-1,+∞.研一研·问题探究、课堂更高效小结“恒成立”问题向最值问题转化是一种常见的题型,对于不能分离参数的恒成立问题,直接求含参函数的最值即可.一般地,可采用分离参数法.λ≥f(x)恒成立⇔λ≥[f(x)]max;λ≤f(x)恒成立⇔λ≤[f(x)]min.研一研·问题探究、课堂更高效跟踪训练3设函数f(x)=2x3-9x2+12x+8c,若对任意的x∈[0,3],都有f(x)c2成立,求c的取值范围.解∵f′(x)=6x2-18x+12=6(x-1)(x-2).∴当x∈(0,1)时,f′(x)0;当x∈(1,2)时,f′(x)0;当x∈(2,3)时,f′(x)0.∴当x=1时,f(x)取极大值f(1)=5+8c.又f(3)=9+8cf(1),∴x∈[0,3]时,f(x)的最大值为f(3)=9+8c.∵对任意的x∈[0,3],有f(x)c2恒成立,∴9+8cc2,即c-1或c9.∴c的取值范围为(-∞,-1)∪(9,+∞).练一练·当堂检测、目标达成落实处1.函数y=f(x)在[a,b]上()A.极大值一定比极小值大B.极大值一定是最大值C.最大值一定是极大值D.最大值一定大于极小值解析由函数的最值与极值的概念可知,y=f(x)在[a,b]上的最大值一定大于极小值.D练一练·当堂检测、目标达成落实处2.函数f(x)=x3-3x(|x|1)()A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值解析f′(x)=3x2-3=3(x+1)(x-1),当x∈(-1,1)时,f′(x)0,所以f(x)在(-1,1)上是单调递减函数,无最大值和最小值,故选D.D练一练·当堂检测、目标达成落实处3.函数y=x-sinx,x∈π2,π的最大值是()A.π-1B.π2-1C.πD.π+1解析因为y′=1-cosx,当x∈π2,π时,y′0,则函数在区间π2,π上为增函数,所以y的最大值为ymax=π-sinπ=π,故选C.C练一练·当堂检测、目标达成落实处4.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为________.解析f′(x)=3x2-6x-9=3(x-3)(x+1).由f′(x)=0得x=3或x=-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.-71练一练·当堂检测、目标达成落实处1.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;函数在一个开区间内只有一个极值,这个极值就是最值.2.求含参数的函数最值,可分类讨论求解.3.“恒成立”问题可转化为函数最值问题.
本文标题:【步步高】2013-2014学年高中数学 第一章 1.3.3函数的最大(小)值与导数课件 新人教A版
链接地址:https://www.777doc.com/doc-5959194 .html