您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 立体几何——面角问题方法归纳
二面角的求法一、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。例1(全国卷Ⅰ理)如图,四棱锥SABCD中,底面ABCD为矩形,SD底面ABCD,2AD2DCSD,点M在侧棱SC上,ABM=60°(I)证明:M在侧棱SC的中点(II)求二面角SAMB的大小。练习1(山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,60ABC,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为62,求二面角E—AF—C的余弦值.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。例2.(山东卷理)如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA1=2,E、E1、F分别是棱AD、AA1、AB的中点。(1)证明:直线EE1//平面FCC1;(2)求二面角B-FC1-C的余弦值。练习2(天津)如图,在四棱锥ABCDP中,底面ABCD是矩形.已知60,22,2,2,3PABPDPAADAB.(Ⅰ)证明AD平面PAB;(Ⅱ)求异面直线PC与AD所成的角的大小;(Ⅲ)求二面角ABDP的大小.三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决例3(湖南)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.练习3已知斜三棱柱ABC—A1B1C1的棱长都是a,侧棱与底面成600的角,侧面BCC1B1⊥底面ABC。(1)求证:AC1⊥BC;(2)求平面AB1C1与平面ABC所成的二面角(锐角)的大小。ABCEDPEABCFE1A1B1C1D1D四、射影面积法(cossSq=射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos斜射SS)求出二面角的大小。例4.(北京理)如图,在三棱锥PABC中,2ACBC,90ACB,APBPAB,PCAC.(Ⅰ)求证:PCAB;(Ⅱ)求二面角BAPC的大小;练习4:如图5,E为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成锐角的余弦值.五、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。例4:(天津卷理)如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=12AD(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;求二面角A-CD-E的余弦值。练习5、(湖北)如图,在直三棱柱111ABCABC中,平面ABC侧面11AABB.(Ⅰ)求证:ABBC;(Ⅱ)若直线AC与平面1ABC所成的角为,二面角1ABCA的大小为,试判断与的大小关系,并予以证明.ACBPA1D1B1C1EDBCA图5二面角大小的求法的归类分析一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例1在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求二面角B-PC—-D的大小。二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的大小。三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例3在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求B-PC-D的大小。四、射影面积法(cossSq=射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos斜射SS)求出二面角的大小,其中为平面角的大小,此方法不必在图形中画出平面角;例4在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角的大小。五、补棱法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。例5、在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角的大小。(补形化为定义法)pABCDLHjABCDPHjABCDPHlABCDP六、向量法:向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。例6、(湖北)如图,在直三棱柱111ABCABC中,平面ABC侧面11AABB.(Ⅰ)求证:ABBC;(Ⅱ)若直线AC与平面1ABC所成的角为,二面角1ABCA的大小为,试判断与的大小关系,并予以证明.由此可见,二面角的类型和求法可用框图展现如下:二面角大小的求法答案定义法:本定义为解题提供了添辅助线的一种规律。如例1中从二面角S—AM—B中半平面ABM上的一已知点(B)向棱AM作垂线,得垂足(F);在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。例1(2009全国卷Ⅰ理)证(I)略解(II):利用二面角的定义。在等边三角形ABM中过点B作BFAM交AM于点F,则点F为AM的中点,过F点在平面ASM内作GFAM,GF交AS于G,连结AC,∵△ADC≌△ADS,∴AS-AC,且M是SC的中点,∴AM⊥SC,GF⊥AM,∴GF∥AS,又∵F为AM的中点,∴GF是△AMS的中位线,点G是AS的中点。则GFB即为所求二面角..∵2SM,则22GF,又∵6ACSA,∴2AM,∵2ABAM,060ABM∴△ABM是等边三角形,∴3BF,在△GAB中,26AG,2AB,090GAB,∴211423BG366232222113212cos222FBGFBGFBGFBFG,∴二面角SAMB的大小为)36arccos(练习1(2008山东)分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。(答案:二面角的余弦值为515)二、三垂线法本定理亦提供了另一种添辅助线的一般规律。如(例2)过二面角B-FC1-C中半平面BFC上的一已知点B作另一半平面FC1C的垂线,得垂足O;再过该垂足O作棱FC1的垂线,得垂足P,连结起点与终点得斜线段PB,便形成了三垂线定理的基本构图(斜线PB、垂线BO、射影OP)。再FG解直角三角形求二面角的度数。例2.(2009山东卷理)证(1)略解(2)因为AB=4,BC=CD=2,、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-A1B1C1D1中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC1-C的一个平面角,在△BCF为正三角形中,3OB,在Rt△CC1F中,△OPF∽△CC1F,∵11OPOFCCCF∴22122222OP,在Rt△OPF中,22114322BPOPOB,272cos7142OPOPBBP,所以二面角B-FC1-C的余弦值为77.练习2(2008天津)分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD⊥平面PAB后,容易发现平面PAB⊥平面ABCD,点P就是二面角P-BD-A的半平面上的一个点,于是可过点P作棱BD的垂线,再作平面ABCD的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角ABDP的大小为439arctan)三.补棱法例3(2008湖南)分析:本题的平面PAD和平面PBE没有明确的交线,依本法显然要补充完整(延长AD、BE相交于点F,连结PF.)再在完整图形中的PF.上找一个适合的点形成二面角的平面角解之。(Ⅰ)证略解:(Ⅱ)延长AD、BE相交于点F,连结PF.过点A作AH⊥PB于H,由(Ⅰ)知,平面PBE⊥平面PAB,所以AH⊥平面PBE.在Rt△ABF中,因为∠BAF=60°,所以,AF=2AB=2=AP.在等腰Rt△PAF中,取PF的中点G,连接AG.则AG⊥PF.连结HG,由三垂线定理的逆定理得,PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角).在等腰Rt△PAF中,22.2AGPA在Rt△PAB中,22225.55APABAPABAHPBAPAB所以,在Rt△AHG中,25105sin.52AHAGHAG故平面PAD和平面PBE所成二面角(锐角)的大小是10arcsin.5练习3提示:本题需要补棱,可过A点作CB的平行线L(答案:所成的二面角为45O)四、射影面积法(cossSq=射影)例4.(2008北京理)分析:本题要求二面角B—AP—C的大小,如果利用射影面积法解题,不难想到在平面ABP与平面ACP中建立一对原图形与射影图形并分别求出S原与S射于是得到下面解法。解:(Ⅰ)证略(Ⅱ)ACBC,APBP,APCBPC△≌△.又PCAC,PCBC.又90ACB,即ACBC,且ACPCC,BC平面PAC.取AP中点E.连结BECE,.ABBP,BEAP.EC是BE在平面PAC内的射影,CEAP.∴△ACE是△ABE在平面ACP内的射影,于是可求得:2222CBACAPBPAB,622AEABBE,2ECAE则1222121CEAESSACE射,3622121EBAESSABE原,EABCFE1A1B1C1D1DF1OPABCEDPFGHACBB1C1A1LACBEP设二面角BAPC的大小为,则3331cos原射SS∴二面角BAPC的大小为33arccos练习4:分析平面AB1E与底面A1B1C1D1交线即二面角的棱没有给出,要找到二面角的平面角,则必须先作两个平面的交线,这给解题带来一定的难度。考虑到三角形AB1E在平面A1B1C1D1上的射影是三角形A1B1C1,从而求得两个三角形的面积即可求得二面角的大小。(答案:所求二面角的余弦值为cosθ=32).五、向量法例4:(2009天津卷理
本文标题:立体几何——面角问题方法归纳
链接地址:https://www.777doc.com/doc-5960337 .html