您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 2011届物理一轮复习课件:3.2《牛顿第二定律两类动力学问题》
第2课时牛顿第二定律两类动力学问题考点自清一、牛顿第二定律1.内容:物体加速度的大小跟作用力成,跟物体的质量成.加速度的方向与相同.2.表达式:.3.适用范围(1)牛顿第二定律只适用于参考系(相对地面静止或的参考系).正比作用力方向反比F=ma惯性匀速直线运动(2)牛顿第二定律只适用于物体(相对于分子、原子)、低速运动(远小于光速)的情况.特别提醒1.牛顿第二定律F=ma在确定a与m、F的数量关系的同时,也确定了三个量间的单位关系及a和F间的方向关系.2.应用牛顿第二定律求a时,可以先求F合,再求a,或先求各个力的加速度,再合成求出合加速度.宏观二、两类动力学问题1.已知物体的受力情况,求物体的.2.已知物体的运动情况,求物体的.名师点拨利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.受力情况运动情况三、单位制1.单位制由基本单位和导出单位共同组成.2.力学单位制中的基本单位有,,.3.导出单位有,,等.特别提醒在计算的时候,如果所有的已知量都用同一种单位制中的单位来表示,那么,只要正确地应用物理公式,计算的结果就总是用这个单位制中的单位来表示,而在计算过程中不必所有的物理量都带单位.长度(m)质量(kg)时间(s)力(N)速度(m/s)加速度(m/s2)热点一牛顿第二定律的“四性”1.瞬时性:牛顿第二定律表明了物体的加速度与物体所受合外力的瞬时对应关系.a为某一瞬时的加速度,F即为该时刻物体所受的合外力,对同一物体a与F的关系为瞬时对应.2.矢量性:牛顿第二定律公式是矢量式,任一瞬间a的方向均与F合的方向相同.当F合方向变化时,a的方向同时变化,且任意时刻两者均保持一致.3.同一性:牛顿第二定律公式中的三个物理量必须是针对同一物体而言的;物体受力运动时必然只有一种运动情形,其运动状态只能由物体所受的合力决定,而不能是其中的一个力或几个力.热点聚焦4.同时性:牛顿第二定律中F、a只有因果关系而没有先后之分,F发生变化时a同时变化,包括大小和方向.交流与思考:牛顿第一定律是不受任何外力作用下的规律,跟合外力为零情况下的牛顿第二定律的结论是一致的,所以可以将牛顿第一定律看做牛顿第二定律的特例.这种说法是否正确?谈谈你的观点.提示:牛顿第一定律是不受任何外力作用下的理想化情况,无法用实验直接验证.牛顿第一定律是以伽利略的“理想实验”为基础,将实验结论经过科学抽象、归纳推理而总结出来的.因此,牛顿第一定律是一种科学的抽象思维方法,它并不是实验定律.而牛顿第二定律表示实际物体在所受外力作用下遵循的规律,是实验定律.牛顿第一定律有着比牛顿第二定律更丰富的内涵,牛顿第一定律和牛顿第二定律是地位相同的两个规律,两者没有从属关系.因此,牛顿第一定律并不是牛顿第二定律的特例.热点二解答两类动力学问题的基本方法及步骤1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况,画好受力分析图,明确物体的运动性质和运动过程.受力情况F合=ma加速度a运动学公式运动情况v0、v、x、t(3)选取正方向或建立坐标系,通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒1.物体的运动情况是由所受的力及物体运动的初始状态共同决定的.2.无论是哪种情况,联系力和运动的“桥梁”是加速度.题型1涉及牛顿第二定律的过程分析如图1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?速度的变化取决于速度方向与加速度方向的关系(当a与v同向时,v变大,当a与v反向时,v变小),而加速度由合力决定,所以要分析v、a的变化,必须先分析物体受到的合力的变化.题型探究【例1】图1思维点拨解析小球接触弹簧上端后受到两个力作用:向下的重力和向上的弹力.在接触后的前一阶段,重力大于弹力,合力向下,因为弹力F=kx不断增大,所以合外力不断减小,故加速度不断减小,由于加速度与速度同向,因此速度不断变大.当弹力逐步增大到与重力大小相等时,合外力为零,加速度为零,速度达到最大.后一阶段,即小球达到上述位置之后,由于惯性小球仍继续向下运动,但弹力大于重力,合外力竖直向上,且逐渐变大,因而加速度逐渐变大,方向竖直向上,小球做减速运动,当速度减小到零时,达到最低点,弹簧的压缩量最大.答案小球的加速度方向是先向下后向上,大小是先变小后变大;速度方向始终竖直向下,大小是先变大后变小.规律总结很多非匀变速过程都要涉及应用牛顿第二定律进行过程分析,如“电磁感应部分导体棒获得收尾速度前的过程”“机车起动获得最大速度之前的过程”等都属于这一问题.分析此类问题应注意以下几方面:(1)准确分析研究对象的受力情况,明确哪些力是恒力,哪些力是变力,如何变化.(2)依据牛顿第二定律列方程,找到运动情况和受力情况的相互制约关系,发现潜在状态(如平衡状态、收尾速度等),找到解题突破口.变式练习1如图2所示,弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的阻力恒定,则()A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为0D.物体从A到O的过程加速度逐渐减小解析首先有两个问题应清楚,物体在A点的弹力大于物体与地面之间的阻力(因为物体能运动),物体在O点的弹力为0.所以在A、O之间有弹力与阻图2力相等的位置,故物体在A、O之间的运动应该是先加速后减速,A选项正确,B选项不正确;O点的弹力为0,但摩擦力不是0,所以C选项不正确;从A到O的过程加速度先减小、后增大,故D选项错误.答案A题型2牛顿第二定律的基本应用(2008·海南·15)科研人员乘气球进行科学考察.气球、座舱、压舱物和科研人员的总质量为990kg.气球在空中停留一段时间后,发现气球漏气而下降,及时堵住.堵住时气球下降速度为1m/s,且做匀加速运动,4s内下降了12m.为使气球安全着陆,向舱外缓慢抛出一定的压舱物.此后发现气球做匀减速运动,下降速度在5分钟内减少了3m/s.若空气阻力和泄漏气体的质量均可忽略,重力加速度g=9.89m/s2,求抛掉的压舱物的质量.【例2】思路导图解析设堵住漏洞后,气球的初速度为v0,所受的空气浮力为F,气球、座舱、压舱物和科研人员的总质量为m,由牛顿第二定律得mg-F=ma①式中a是气球下降的加速度.以此加速度在时间t内下降了h,则h=v0t+②当向舱外抛掉质量为m’的压舱物后,有F-(m-m’)g=(m-m’)a′③式中a′是抛掉压舱物后气球的加速度.由题意,此时a′方向向上,Δv=a′Δt④式中Δv是抛掉压舱物后气球在Δt时间内下降速度的减少量.由①③得m′=m⑤将题设数据m=990kg,v0=1m/s,t=4s,h=12m,Δt=300s,Δv=3m/s,g=9.89m/s2代入②④⑤式得m′=101kg⑥答案101kg221at''agaa规律总结动力学问题不外乎两大类:一类是已知力求运动,对这类问题首先要求出合外力,而后根据牛顿第二定律求加速度,再求其他运动学量;另一类是已知运动求力,这类问题要首先求出加速度,再根据牛顿第二定律求合外力,最后再运用力的合成与分解知识求解某些具体的作用力.这两类问题都要遵从以下解题步骤:(1)明确研究对象.(2)对研究对象进行受力分析,画出受力分析图,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来.变式练习2如图3所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为θ.求人所受到的支持力和摩擦力.解析解法一以人为研究对象,他站在减速上升的电梯上,受到竖直向下的重力mg和竖直向上的支持力FN,还受到水平方向的静摩擦力F静,由于物体斜向下的加速度有一个水平向左的分量,故可判断静摩擦力的方向水平向左,人受力如图(a)所示,建立如图所示的坐标系,并将加速度分解为水平方向加速度ax和竖直方向加速度ay,如图(b)所示,则图3ax=acosθ,ay=asinθ.由牛顿第二定律得F静=max,mg-FN=may解得F静=macosθ,FN=m(g-asinθ)解法二以人为研究对象,受力分析如图所示.因摩擦力F为待求,且必沿水平方向,设为水平向右.建立图示坐标,并规定正方向.根据牛顿第二定律得x方向:mgsinθ-FNsinθ-Fcosθ=ma①y方向:mgcosθ+Fsinθ-FNcosθ=0②由①②两式可解得FN=m(g-asinθ),F=-macosθF为负值,说明摩擦力的实际方向与假设方向相反,为水平向左.答案F静=macosθFN=m(g-asinθ)题型3用动力学方法分析多过程问题如图4所示,在光滑水平面AB上,水平恒力F推动质量为m=1kg的物体从A点由静止开始做匀加速直线运动,物体到达B点时撤去F,接着又冲上光滑斜面(设经过B点前后速度大小不变,最高能到达C点,用速度传感器测量物体的瞬时速度,表中记录了部分测量数据),求:【例3】图4(1)恒力F的大小.(2)斜面的倾角α.(3)t=2.1s时物体的速度.解析(1)物体从A到B过程中:a1==2m/s2①则F=ma1=2N②(2)物体从B到C过程中a2==5m/s③由牛顿第二定律可知mgsinα=ma2④代入数据解得sinα=1/2,α=30°⑤t(s)0.00.20.4…2.22.42.6…v(m/s)0.00.40.8…3.02.01.0…11tv22tv(3)设B点的速度为vB,从v=0.8m/s到B点过程中vB=0.8+a1t1⑥从B点到v=3m/s过程vB=3+a2t2⑦t1+t2=1.8s⑧解得t1=1.6st2=0.2svB=4m/s⑨所以,当t=2s时物体刚好达到B点当t=2.1s时v=vB-a2(t-2)⑩v=3.5m/s.答案(1)2N(2)30°(3)3.5m/s本题共20分.其中①②③④⑤⑥⑦⑧⑨式各2分,⑩式各1分.为了考查学生的各方面能力,题目中的已知条件和数据以多种形式提供,列表提供已知数据是最近几年高考试题中出现的一种新的形式,要求同学们能从表中的数据获取有用的信息进行求解.【评价标准】【名师导析】自我批阅(11分)在消防演习中,消防队员从一根竖直的长直轻绳上由静止滑下,经一段时间落地.为了获得演习中的一些数据,以提高训练质量,研究人员在轻绳上端安装一个力传感器并与数据处理系统相连接,用来记录消防队员下滑过程中轻绳受到的拉力与消防队员重力的比值随时间变化的情况如图5所示.已知某队员在一次演习中的数据如图所示,经2.5s时间落地.(g取10m/s2)求:图5(1)该消防队员下滑过程中,在0~1s内的加速度是多少?(2)该消防队员在下滑过程中的最大速度是多少?(3)该消防队员在落地时速度是多少?解析(1)该队员在0~1s时间内以a1匀加速下滑由牛顿第二定律得:mg-F1=ma1(2分)所以a1=g-=4m/s2(1分)(2)该队员在0~1s内加速下滑,1s~2.5s内减速下滑,在t=1s时速度达到最大,则最大速度vm=a1t1(2分)代入数据解得:vm=4m/s(1分)(3)设该队员减速下滑的加速度为a2mF1由牛顿第二定律得:F2-mg=ma2(2分)a2=-g=2m/s2队员落地时的速度v=vm-a2t2(2分)t2=1.5s代入数据解得:v=1m/s(1分)答案(1)4m/s2(2)4m/s(3)1m/smF2素能提升1.在交通事故的分析中,刹车线的长度是很重要的依据.刹车线是汽车刹车后,停止转动的轮胎在地面上滑动时留下的痕迹.在某次交通故事中,汽车的刹车线的长度是14m,假设汽车轮胎与地面的动摩擦因数为0.7,g=10m/s2.则
本文标题:2011届物理一轮复习课件:3.2《牛顿第二定律两类动力学问题》
链接地址:https://www.777doc.com/doc-6031907 .html