您好,欢迎访问三七文档
纳米粒子的自组装摘要:本文主要介绍了自组装的相关基础知识,并具体对纳米粒子的自组装进行了介绍,通过组装单元的类型对纳米粒子的自组装进行分类。组装单元有柔性的也有刚性的,有各向异性的也有各向同性的。分为各向同性刚性粒子的自组装、各向异性刚性粒子的自组装、各向异性柔性粒子的自组装以及各向同性柔性粒子的自组装这四类进行了详细介绍。关键词:纳米粒子,自组装,刚性,柔性,各向同性,各向异性1引言组装在汉语释义中,是指把零散的部件组合在一起,使成为整体,组装的过程中,用到的是人力或者机械力。与日常生活中的“组装”不同,自组装(self-assembly)是指在非共价力的作用下,小分子、大分子或纳米粒子组合成规则有序的物体。这里的非共价力包括范德华力、氢键、静电作用、疏水作用、偶极相互作用等,称为自组装的驱动力,非共价力不是人手或者机械可以操控的,非共价力的操控需要人们对于物理化学的原理的理解和运用。自组装形成的规则有序的物体称为自组装体或者组装体(assembly),形成组装体的原料成为组装单元(buildingblock),根据组装单元的不同,相应的就有小分子自组装、大分子自组装和纳米粒子的自组装。图1.1是不同尺度物体生产的空间坐标轴,在坐标轴的右侧,常规加工可以制造各种尺寸大于0.1mm的物体,制造的技术已经非常成熟。微加工(microfabrication)则可以制造各种复杂形貌的微米物体(1-100μm),比如用双光线技术。在坐标轴的左侧,在零点几纳米到几纳米的尺度内,有机化学已经可以根据需要设计合成各种目标分子,技术已经非常成熟;在几个纳米到几百纳米范围内,高分子化学家则可以合成各种构造的高分子入梳形高分子,胶体化学家可以合成各种纳米晶体如八角状的纳米晶体,该尺度范围内,虽然还不能按照需要任意地制备物体,但是已经可以制造很多种不同结构不同形貌的物体,然而对于位于坐标轴中间的几十纳米到几个微米的尺度范围来说,该尺度大于化学合成所能制备的物体的上限,小于常规加工和微加工所能达到的下限,该尺度范围内的制造需要人们通过物理化学的原理的理解和使用来完成,这就是大分子自组装以及纳米粒子的自组装的任务所在。图1.1Fabricationofobjectsatallscales大分子自组装经过三十年的发展,通过嵌段共聚物溶液自组装的方法可以制备二三十种不同形貌的物体,在发展过程中建立起来的各种组装单元、驱动力和组装路线已经成为药物传递、生物材料等热门领域的工作基础。大分子组装也为纳米粒子的自组装提供了工作基础。2纳米粒子的自组装介绍所谓自组装是指基本结构单元(分子,纳米材料,微米或更大尺度的物体)自发形成有序结构的一种技术。自组装能否实现取决于基本结构单元的特性,如表面形貌、形状、表面功能团和表面电势等,组装完成后其最终的结构具有最低的自由能。内部驱动力是实现自组装的关键,这些驱动力包括范德华力、氢键、静电力等只作用于分子水平的非共价键力和那些能作用于较大尺寸范围的力,如表面张力、毛细管力等。从分子到宏观物体的各种不同尺度下的自组装体系,一直都是科学家研究的热点。而以纳米材料为单元,将其自组装为各种分级有序结构是近年来刚刚兴起的研究热点。纳米尺度(0.1-100mm)是介于宏观物体与微观分子之间的介观层次,具有超乎寻常的光学、电学、磁学、力学的性质。研究者们一直期望能够像操纵分子一样操纵纳米结构单元。纳米粒子的自组装以纳米粒子为组装单元,目标是把微观尺度和宏观尺度之间的空白连接起来。纳米粒子的自组装通过调节纳米尺度下粒子之间的相互作用来控制粒子在整个组装体上的分布。纳米粒子的自组装致力于构筑更多的复杂有序的结构,其中有一些是大分子自组装所不能获得的。3纳米粒子的自组装分类根据组装单元的类型对纳米粒子的自组装进行分类。组装单元有柔性的也有刚性的,有各向异性的也有各向同性的。分为四类:1)各向同性刚性粒子的自组装;2)各向异性刚性粒子的自组装;3)各向异性柔性粒子的自组装;4)各向同性柔性粒子的自组装。第一类是刚性粒子的结晶,组装单元是单分散二氧化硅球、聚合物胶乳粒、半导体纳米粒子和金属纳米粒子,胶体结晶的过程有的是熵驱动的,有的是焓驱动的,焓驱动的体系需要纳米粒子的表面有特定的官能团,使粒子之间能够通过范德华力作用、DNA碱基互补配对或者经典相互作用发生组装。第二类是各向异性刚性粒子的自组装,如前所述“大分子自组装也为纳米粒子的自组装提供了工作基础”,大分子自组装的研究告诉我们有各向异性或者两亲性的物体才能作为组装单元,所以,理论预言了许多种各向异性粒子和由它们组装形成的超粒子。实验上,有不少工作致力于各向异性刚性粒子的制备,进一步的,在组装性质的研究中,各向异性纳米粒子的组装并不容易得到形貌和结构规整的组装体,原因是刚性粒子间的接触位点面积小,组装体的稳定较困难;另外,当使用的纳米粒子的尺寸较大时,粒子之间的范德华作用较强,这干扰各向异性作用对规则组装体形成的驱动。当然,也有例外,通过引入粒子间的排斥,SteveGranick等用不对称刚性纳米球的组装得到了规整的粒子超晶格和粒子螺旋体。第三类是各向异性柔性粒子的自组装,柔性粒子通常是聚合物粒子或者含有聚合物成分的杂化粒子,它们在溶剂里的分散性能很好,粒子的溶剂化可以抵消粒子之间的各向同性的范德华作用,各向异性的相互作用因此得以体现。组装过程中,各向同性柔性粒子调整形状和组分分布而组装得到能量最低的稳定的超结构。组装可得到规整的球形、柱状、管状和片状的超粒子。第四类是各向同性柔性粒子的自组装,各向同性柔性粒子通常是核壳结构的纳米粒子而且有很高的柔性,在组装过程中,它们通过变形和成分的重新分布,表现的像各向异性粒子一样。事实上,在形成的组装体中,原先的各向同性粒子己经变形成了各向异性粒子。各向同性柔性粒子的组装能制造许多复杂的超结构。组装过程常常涉及微妙的热力学或者动力学:柔性粒子的变形有助于粒子之间发生偶合,变形时损失的熵又可以由偶合时收获的洽来弥补。对熵和焓的调变就可以获得丰富的超结构。以上的分类方式也正好顺应各类自组装发生的时间顺序。20世纪80年代,胶体晶体出现。2000年后,开始有各向异性纳米粒子的制备和组装的报道。同期出现的是各向异性柔性粒子的制备和组装。2005年,出现第一例各向同性柔性粒子的组装报道。第一类组装得到的是周期结构,物体的尺寸在宏观尺度,与后面的三类不同。后面三类得到的是在溶剂中分立的组装体。后三类组装在内容上有递进关系,在各向异性粒子的组装中,柔性的粒子比刚性粒子得到的组装体的规整性更高,各向同性柔性粒子在组装过程中也能表现出各向异性,它们的制备比各向异性柔性粒子容易得多,成熟得多。下面就对这四类组装一一进行介绍。3.1各向同性刚性粒子的自组装各向同性粒子(指的是球形的粒子,表面的化学成分是均匀的。单分散的各向同性粒子可以在熵或者焓的驱动下结晶形成胶体晶体。胶体结晶中最经典的是硬球体系,理论上,硬球体系指的是硬球球心之间距离大于等于直径时,球之间的作用力为0,距离小于直径时,球之间的作用力无限大的体系。实验上,硬球体系是单分散的几百纳米的刚性粒子和相应溶剂的体系,为了在距离大于等于粒子直径时让粒子之间的相互作用接近零,刚性粒子的表面由长链有机分子修饰,靠体积排除在溶剂中稳定,溶剂的折光指数调成和粒子的折光指数相同,这样,粒子之间的范德华相互作用就很小;至于距离小于直径时,因为是刚性粒子,变形需要很大的力,就可以处理成排斥作用力无限大。硬球体系的胶体结晶是一个熵驱动的过程。整个体系的熵包括平动熵和自由体积熵。在低的胶体浓度下,平动熵占主导地位,胶体的流动态是稳定的。当胶体浓度上升时,自由体积熵渐渐地占据主导地位,胶体晶体的状态是热力学稳定的,自由体积熵的增大是因为胶体规则堆积后,溶剂分子获得了最大的自由度。在早期的研究报道中,胶体结晶是通过静置浓缩的胶体分散液或者通过稀的胶体分散液的重力沉降(沉降后,底部的胶体分散液得到浓缩)来实现的。这两种方法都需要较长的时间让粒子扩散和重排来完成无序有序转变,这是因为几百纳米的胶体的运动较小分子和几纳米或几十纳米的粒子慢得多,而且体系的粘度也比较大。面心立方和六方密堆积是热力学稳定的结构,因为这样的堆积方式能获得最高的自由体积熵。熵驱动的胶体结晶是制备三维光子晶体的低成本低能耗的方法。然而,通过浓分散液法和沉降法得到的胶体晶体会有缺陷,包括空隙、宏观的裂缝、多晶区域和堆积错误。后来的研究解决了这些问题低缺陷高机械强度的胶体晶体的大规模制备和各种二元的胶体晶体点阵的制备都已经实现。而且,用小液滴做模板,做液滴内部的胶体结晶可以制备胶体晶体的超粒子。无机功能纳米粒子有光学、电学或者磁学的性质,把它们组装成规整的周期结构后,胶体晶体是否能保留和增强原有的性质,或者展现新的性质呢?这是个有趣的问题。功能纳米粒子的直径通常在10nm左右,它们的结晶需要粒子之间的吸引。Bawendi等通过缓慢改变溶剂的极性,使CdSe量子点失稳,即引入粒子间的范德华相互作用,实现了纳米粒子的结晶。碱基互补配对和静电相互作用也可以用来驱动胶体结晶,获得点阵类型丰富的二元晶体。胶体结晶是否属于纳米粒子的自组装,这是有争议的。纳米粒子的自组装一般得到有特定形状和尺寸的超粒子,然而胶体结晶通常得到本体的胶体晶体(除了模板下的胶体结晶外)。不管怎么样,在胶体结晶中所用到的对粒子之间非共价作用的调节的原理和技术都可以用来指导纳米粒子的自组装。3.2各向异性刚性粒子的自组装除了在胶体结晶时,各向同性的纳米粒子被用作组装单元,对于纳米粒子的自组装而言,各向异性曾被认为是必需的,就像对于大分子自组装而言,各向异性或者两亲件被认为是组装所必需的,这是大分子自组装对于纳米粒子自组装的影响。在进行纳米粒子的自组装时,各向异性粒子上的疏溶剂部分提供吸引力,亲溶剂部分提供排斥力,稳定形成的超粒子。下面简单介绍各向异性纳米粒子的制备和自组装。刚性粒子定义为在组装的过程中,粒子的形状和组分分布不发生改变的粒子。3.2.1刚性的补丁粒子的制备和自组装补丁粒子(patchyparticle)是指粒子上有少量的修饰点的粒子,修饰点可以是官能团,高分子或者小的纳米粒子。SharonGlotze预测了许多种补丁粒子并通过计算机模拟预测由补丁粒子组装成的链状、片状、环状、四面体、二十面体、胶束状等超结构(图3.1)。实验上,各向异性粒子(anisotropicparticle)的制备是有挑战的,因为,热力学上,在修饰时,各向同性的修饰或者随机的修饰显然是优于补丁修饰的;动力学上,在做基于溶液的修饰时,表面上任意一点获得修饰的概率是一样的。所以,补丁粒子的制备必须经过特别的设计。图3.1Predictedcomplexstructuresfromself-assemblyofpatchyparticles.(Left)Twistedwireoftetheredtriangularnanoparticles;(middle)tetrahedron,icosahedron,andringself-assembledfromsphericalpatchyparticles;(right)micellesoftetherednanospheres.Tofabricateringsfrompatchyparticles,selectivestickypatchesareplacedanisotropicallyontheequatorialplaneatarelativeangleof180..Thediameteroftheringsiscontrolledbytheanglebetweenthepatches.Tetrahedraandicosahedraformfromparticleswithselective,ringlikepatchesshiftedofftheequatorialplane.Reproducedfrom.3.2.2刚性的不对称粒子的制备和自组装不对称粒子(Jan
本文标题:纳米粒子的自组装
链接地址:https://www.777doc.com/doc-6037320 .html