您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > DS18B20温度传感器课程设计
摘要随着社会的进步和工业技术的发展,温度因素在社会生活各个方面已不容忽视。由于许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都是单点测量,同时有温度信息传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。在这样的形式下,开发一种能够同时测量多点,并且实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要。在单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术条件下,我们可以基于89S51单片机,利用液晶显示器件以及DS18B20温度传感器等器件,通过温度传感器在单片机下的硬件连接,软件编程即可设计DS18B20温度传感器系统。该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。关键词:单片机AT89C51、DS18B20温度传感器、液晶显示LCD1602二、内容课程设计题目基于DS18B20的温度传感器课题的背景在人类的生活环境中,温度扮演着极其重要的角色,都无时无刻不在与温度打交道。自18世纪工业革命以来,工业发展与是否掌握温度有着紧密的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎%80的工业部门都不得不考虑着温度的因素。温度对于工业如此重要,由此推进了温度传感器的发展。1.1传感器三个发展阶段:一是模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等特点,适合远距离测温、控温,不需要进行非线性校准,且外围电路简单。它是目前在国内外应用最为普遍的一种集成传感器,典型产品有AD590、AD592、TMP17、LM135等。二是模拟集成温度控制器。模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。某些增强型集成温度控制器(例如TC652/653)中还包含了A/D转换器以及固化好的程序,这与智能温度传感器有某些相似之处。但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别。三是智能温度传感器。智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,当然,其智能化程度也取决于软件的开发水平。1.2温度传感器的发展趋势进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。1.3传感器在温控系统中的应用目前市场主要存在单点和多点两种温度测量仪表。对于单点温测仪表,主要采用传统的模拟集成温度传感器,其中又以热电阻、热电偶等传感器的测量精度高,测量范围大,而得到了普遍的应用。此种产品测温范围大都在-200℃~800℃之间,分辨率12位,最小分辨温度在0.001~0.01之间。自带LED显示模块,显示4位到16位不等。有的仪表还具有存储功能,可存储几百到几千组数据。该类仪表可很好的满足单个用户单点测量的需要。多点温度测量仪表,相对与单点的测量精度有一定的差距,虽然实现了多路温度的测控,但价格昂贵。针对目前市场的现状,本设计提出了一种可满足要求、可扩展的并且性价比高的单片机多路测温系统。2、课程设计目的通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。3、设计任务和要求以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为±0.5摄氏度。温度显示采用LCD1602显示,两位整数,一位小数。4、正文(一)、方案选择与论证根据设计任务的总体要求,本系统可以划分为以下几个基本模块,针对各个模块的功能要求,分别有以下一些不同的设计方案:(1)、温度传感模块方案一:采用热敏电阻,热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的,也不能满足测量范围。在温度测量系统中,也常采用单片温度传感器,比如AD590,LM35等。但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使测温系统的硬件结构较复杂。另外,这种测温系统难以实现多点测温,也要用到复杂的算法,一定程度上也增加了软件实现的难度。方案二:采用单总线数字温度传感器DS18B20测量温度,直接输出数字信号。便于单片机处理及控制,节省硬件电路。且该芯片的物理化学性很稳定,此元件线形性能好,在0—100摄氏度时,最大线形偏差小于1摄氏度。DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89C51构成的温度装置,它直接输出温度的数字信号到微控制器。每只DS18B20具有一个独有的不可修改的64位序列号,根据序列号可访问不同的器件。这样一条总线上可挂接多个DS18B20传感器,实现多点温度测量,轻松的组建传感网络。综上分析,我们选用第二种方案。温度传感模块仿真图(2)、显示模块方案一:采用8位段数码管,将单片机得到的数据通过数码管显示出来。该方案简单易行,但所需的元件较多,且不容易进行操作,可读性差,一旦设定后很难再加入其他的功能,显示格式受限制,且大耗电量大,不宜用电池给系统供电。方案二:采用液晶显示器件,液晶显示平稳、省电、美观,更容易实现题目要求,对后续的园艺通兼容性高,只需将软件作修改即可,可操作性强,也易于读数,采用RT1602两行十六个字符的显示,能同时显示其它的信息如日期、时间、星期、温度。综上分析,我们采用了第二个方案显示模块仿真图三、系统的具体设计与实现(1)、系统的总体设计方案采用AT89S52单片机作为控制核心对温度传感器DS18B20控制,读取温度信号并进行计算处理,并送到液晶显示器LCD1602显示。按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。数字温度计总体电路结构框图如图下所示。(2)、硬件电路设计a、单片机控制模块该模块由AT89C51单片机组成在设计方面,AT89C51的EA接高电平,其外围电路提供能使之工作的晶振脉冲、复位按键,四个I/O分别接8路的单列IP座方便与外围设备连接。当AT89C51芯片接到来自温度传感器的信号时,其内部程序将根据信号的类型进行处理,并且将处理的结果送到显示模块,发送控制信号控制各模块。b、温度传感器模块DS18B20相关资料1、DS18B20原理与分析DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。以下是DS18B20的特点:(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。(2)在使用中不需要任何外围元件。(3)可用数据线供电,电压范围:+3.0~+5.5V。(4)测温范围:-55-+125℃。固有测温分辨率为0.5℃。(5)通过编程可实现9-12位的数字读数方式。(6)用户可自设定非易失性的报警上下限值。(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。2、DS18B20的测温原理DS18B20的测温原理上图所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55℃所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。DS18B20工作过程一般遵循以下协议:初始化——ROM操作命令——存储器操作命令——处理数据①初始化单总线上的所有处理均从初始化序列开始。初始化序列包括总线主机发出一复位脉冲,接着由从属器件送出存在脉冲。存在脉冲让总线控制器知道DS1820在总线上且已准备好操作。②ROM操作命令一旦总线主机检测到从属器件的存在,它便可以发出器件ROM操作命令之一。所有ROM操作命令均为8位长。这些命令如下:ReadROM(读ROM)[33h]此命令允许总线主机读DS18B20的8位产品系列编码,唯一的48位序列号,以及8位的CRC。此命令只能在总线上仅有一个DS18B20的情况下可以使用。如果总线上存在多于一个的从属器件,那么当所有从片企图同时发送时将发生数据冲突的现象(漏极开路会产生线与的结果)。MatchROM(符合ROM)[55h]此命令后继以64位的ROM数据序列,允许总线主机对多点总线上特定的DS1寻址。只有与64位ROM序列严格相符的DS18B20才能对后继的存贮器操作命令作出响应。所有与64位ROM序列不符的从片将等待复位脉冲。此命令在总线上有单个或多个器件的情况下均可使用。SkipROM(跳过ROM)[CCh]在单点总线系统中,此命令通过允许总线主机不提供64位ROM编码而访问存储器操作来节省时间。如果在总线上存在多于一个的从属器件而且在SkipROM命令之后发出读命令,那么由于多个从片同时发送数据,会在总线上发生数据冲突(漏极开路下拉会产生线与的效果)。Sear
本文标题:DS18B20温度传感器课程设计
链接地址:https://www.777doc.com/doc-6037827 .html