您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 2017-2018学年浙江省杭州市江干区八年级(下)期末数学试卷
第1页(共21页)2017-2018学年浙江省杭州市江干区八年级(下)期末数学试卷一.选择题(本题有10小题,每小题3分,共30分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.92.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形3.(3分)下列命题为真命题是()A.对角线相等的四边形是矩形B.对角线垂直且相等的四边形是正方形C.对角线垂直平分的四边形是菱形D.对角线相等平分的四边形是正方形4.(3分)某班20位男同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()尺码(码)3839404142人数251021A.39,39B.38,39C.40,40D.40,395.(3分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣36.(3分)如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E,已知AB=10,AC=18,则DE的长为()第2页(共21页)A.4B.5C.6D.77.(3分)如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2B.2C.4D.48.(3分)如图,矩形ABCD,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=24°,则∠ECD的度数是()A.21°B.22°C.23°D.24°9.(3分)用反证法证明“三角形中必有一个内角不小于60°”时,应当假设这个三角形中()A.有一个内角小于60°B.每一个内角小于60°C.有一个内角大于60°D.每一个内角大于60°10.(3分)如图,已知在平行四边形ABCD中,E、F是对角线BD上的两点,则以下条件不能判断四边形AECF是平行四边形的是()第3页(共21页)A.AF=FEB.∠BAE=∠DCFC.AF⊥CF,CE⊥AED.BE=DF二.填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式中字母a的取值范围是.12.(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是.13.(4分)已知m是方程x2﹣3x﹣7=0的一个根,2m2﹣6m+1=.14.(4分)已知一个多边形的每一个内角都等于108°,则这个多边形的边数是.15.(4分)已知反比例函数y=,若﹣3≤y≤6,且y≠0,则x的取值范围是.16.(4分)如图,在平面直角坐标系中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.三.解答题(本题有7小题共66分317.(6分)(1)计算(结果保留号);(2)分析(1)的结果在哪两个整数之间?18.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣4,4),B(﹣4,1),C(﹣2,3).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点C关于x轴的对称点C',若把点C'向右平移a个单位长度后落后在△A1B1C1第4页(共21页)的内部(不包括顶点和边界),求a的取值范围.19.(8分)七巧板是我国祖先的一项卓越创造,下列两幅图中有一幅是小明用如图所示的七巧板拼成的,另一幅则不是请选出不是小明拼成的那幅图,并说明选择的理由.20.(10分)已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请分别用以下方法解这个方程:①配方法;②公式法;(2)若方程有两个实数根,求a的取值范围.21.(10分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F,作DG∥BE,交BC于点G,连接FG交BD于点O.(1)判断四边形BFDG的形状,并说明理由;(2)若AB=3,AD=4,求FG的长.22.(12分)在面积都相等的所有三角形中,当其中一个三角形的一边长x为1时,这条边上的高y为6.第5页(共21页)(1)①求y关于x的函数表达式;②当x≥3时,求y的取值范围;(2)小李说其中有一个三角形的一边与这边上的高之和为4,小赵说有一个三角形的一边与这边上的高之和为6.你认为小李和小赵的说法对吗?为什么?23.(12分)如图,菱形纸片ABCD的边长为2,∠BAC=60°,翻折∠B,∠D,使点B、D两点重合在对角线BD上一点P,EF,GH分别是折痕.设AE=x(0<x<2).(1)证明:AG=BE;(2)当0<x<2时,六边形AEFCHG周长的值是否会发生改变,请说明理由;(3)当0<x<2时,六边形AEFCHG的面积可能等于吗?如果能,求此时x的值;如果不能,请说明理由.第6页(共21页)2017-2018学年浙江省杭州市江干区八年级(下)期末数学试卷参考答案与试题解析一.选择题(本题有10小题,每小题3分,共30分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.9【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选:A.【点评】本题考查了二次根式的计算与化简:=|a|.2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形【分析】根据轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)下列命题为真命题是()A.对角线相等的四边形是矩形B.对角线垂直且相等的四边形是正方形第7页(共21页)C.对角线垂直平分的四边形是菱形D.对角线相等平分的四边形是正方形【分析】根据矩形、菱形、正方形的判定定理判断即可.【解答】解:对角线相等的平行四边形是矩形,A是假命题;对角线垂直且相等的平行四边形是正方形,B是假命题;对角线垂直平分的四边形是菱形,C是真命题;对角线相等平分且垂直的四边形是正方形,D是假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(3分)某班20位男同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()尺码(码)3839404142人数251021A.39,39B.38,39C.40,40D.40,39【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据40出现了10次,次数最多,所以众数为40,一共有20个数据,位置处于中间的数是:40,40,所以中位数是(40+40)÷2=40.故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题第8页(共21页)中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选:D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.(3分)如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E,已知AB=10,AC=18,则DE的长为()A.4B.5C.6D.7【分析】延长BE交AC于F,证明△AEF≌△AEB,根据全等三角形的性质得到AF=AB=10,BE=EF,根据三角形中位线定理计算即可.【解答】解:延长BE交AC于F,∵BE⊥AE,∴∠AEB=∠AEF=90°,在△AEF和△AEB中,,∴△AEF≌△AEB(ASA)∴AF=AB=10,BE=EF,∴CF=AC﹣AF=8,∵BE=EF,BD=DC,∴DE=CF=4,故选:A.第9页(共21页)【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7.(3分)如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2B.2C.4D.4【分析】设A(a,),可求出D(2a,),由于对角线垂直,计算对角线乘积的一半即可.【解答】解:设A(a,),可求出D(2a,),∵AB⊥CD,∴S四边形ACBD=AB•CD=×2a×=4,故选:C.【点评】本题主要考查了反比例函数系数k的几何意义以及线段垂直平分线的性质,解题的关键是设出点A和点B的坐标.8.(3分)如图,矩形ABCD,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=24°,则∠ECD的度数是()第10页(共21页)A.21°B.22°C.23°D.24°【分析】根据矩形性质求出∠BCD=90°,AB∥CD,根据平行线的性质和外角的性质求出∠ACD=3∠DCE,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AB∥CD,∠BCD=90°,∵∠ACB=24°,∴∠ACD=90°﹣24°=66°,∵∠ACF=∠AFC,∠FAE=∠E,∠AFC=∠FAE+∠E∴∠AFC=2∠E∵AB∥CD∴∠E=∠DCE∴∠ACD=3∠DCE=66°,∴∠DCE=22°故选:B.【点评】本题考查了矩形的性质,平行线的性质,三角形外角性质等知识点,能求出∠FEA的度数是解此题的关键.9.(3分)用反证法证明“三角形中必有一个内角不小于60°”时,应当假设这个三角形中()A.有一个内角小于60°B.每一个内角小于60°C.有一个内角大于60°D.每一个内角大于60°【分析】反证法的第一步是假设命题的结论不成立,据此可以得到答案.【解答】解:用反证法证明“三角形中必有一个内角不小于60°”时,应先假设三角形中每一个内角都小于60°.故选:B.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:第11页(共21页)(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.10.(3分)如图,已知在平行四边形ABCD中,E、F是对角线BD上的两点,则以下条件不能判断四边形AECF是平行四边形的是()A.AF=FEB.∠BAE=∠DCFC.AF⊥CF,CE⊥AED.BE=DF【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,
本文标题:2017-2018学年浙江省杭州市江干区八年级(下)期末数学试卷
链接地址:https://www.777doc.com/doc-6054533 .html