您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017年高考北京卷文数试题解析(原卷版)
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知全集UR,集合{|22}Axxx或,则UAð(A)(2,2)(B)(,2)(2,)(C)[2,2](D)(,2][2,)(2)若复数(1i)(i)a在复平面内对应的点在第二象限,则实数a的取值范围是(A)(,1)(B)(,1)(C)(1,)(D)(1,)(3)执行如图所示的程序框图,输出的s值为(A)2(B)32(C)53(D)85(4)若,xy满足3,2,,xxyyx则2xy的最大值为(A)1(B)3(C)5(D)9(5)已知函数1()3()3xxfx,则()fx(A)是偶函数,且在R上是增函数(B)是奇函数,且在R上是增函数(C)是偶函数,且在R上是减函数(D)是奇函数,且在R上是减函数(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60(B)30(C)20(D)10(7)设m,n为非零向量,则“存在负数,使得m=λn”是“m·n0”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)1093第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。(9)在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若sin=13,则sin=_________.(10)若双曲线221yxm的离心率为3,则实数m=_________.(11)已知0x,0y,且x+y=1,则22xy的取值范围是_________.(12)已知点P在圆22=1xy上,点A的坐标为(−2,0),O为原点,则AOAP的最大值为_________.(13)能够说明“设a,b,c是任意实数.若abc,则a+bc”是假命题的一组整数a,b,c的值依次为_________.(14)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为_________.②该小组人数的最小值为_________.三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。(15)(本小题13分)已知等差数列na和等比数列nb满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求na的通项公式;(Ⅱ)求和:13521nbbbb.(16)(本小题13分)已知函数π()3cos(2)2sincos3fxxxx.(I)求f(x)的最小正周期;(II)求证:当ππ[,]44x时,12fx.(17)(本小题13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30],[30,40],,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.(18)(本小题14分)如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BDE时,求三棱锥E–BCD的体积.(19)(本小题14分)已知椭圆C的两个顶点分别为A(−2,0),B(2,0),焦点在x轴上,离心率为32.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.(20)(本小题13分)已知函数()ecosxfxxx.(Ⅰ)求曲线()yfx在点(0,(0))f处的切线方程;(Ⅱ)求函数()fx在区间π[0,]2上的最大值和最小值.
本文标题:2017年高考北京卷文数试题解析(原卷版)
链接地址:https://www.777doc.com/doc-6055197 .html