您好,欢迎访问三七文档
“放缩法”证明数列不等式2311111()2222nnN求证:例1231232()2222nnnN求证:变式12311111()21212121nnN求证:变式2231232()2122232nnnnN求证:变式31(niiakk为常数)形(一)如不等式左边可用等比数列前n项和公式求和.分析左边11(1)22112n112n12311111()2222nnN求证:例1表面是证数列不等式,实质是数列求和不等式左边可用“错位相减法”求和.分析由错位相减法得222nn2231232()2222nnnN求证:变式1表面是证数列不等式,实质是数列求和231232222nn左边不能直接求和,须先将其通项放缩后求和,如何放缩?分析2311111()21212121nnN求证:变式2将通项放缩为等比数列注意到11212nn左边11(1)22112n112n12311112222n左边不能直接求和,须先将其通项放缩后求和,如何放缩?分析注意到222nn2231232()2122232nnnnN求证:变式3231232222nn左边22nnnnn将通项放缩为错位相减模型【方法总结之一】放缩法证明与数列求和有关的不等式,若1niia可直接求和,就先求和再放缩;若不能直接求和的,一般要先将通项na放缩后再求和.问题是将通项na放缩为可以求和且“不大不小”的什么样的nb才行呢?其实,能求和的常见数列模型并不多,主要有等差模型、等比模型、错位相减模型、裂项相消模型等.实际问题中,nb大多是等比模型或裂项相消模型.11111()13320557(21)(21)213)nnnN求证:(广东文例222211112()23nnN求证:变式122211171()234(2013)nnN求证:广东理变式222211151()233nnN求证:变式3左边可用裂项相消法求和,先求和再放缩.分析11(1)221n1211111()13320557(21)(21)213)nnnN求证:(广东文例2表面是证数列不等式,实质是数列求和111111[(1)()()]23352121nn左边1111()(21)(21)22121nnnn左边不能求和,应先将通项放缩为裂项相消模型后求和.分析111n22()n保留第一项,从第二项开始放缩111111(1)()()2231nn左边21n22211112()23nnN求证:变式11(1)nn11()12nnn当n=1时,不等式显然也成立.变式2的结论比变式1强,要达目的,须将变式1放缩的“度”进行修正,如何修正?分析22211171()234(2013)nnN求证:广东理变式2保留前两项,从第三项开始放缩思路一211(1)nnn左边111142n714n374()n211111111()()()223341nn111nn(3)n将变式1的通项从第三项才开始放缩.当n=1,2时,不等式显然也成立.变式2的结论比变式1强,要达目的,须将变式1放缩的“度”进行修正,如何修正?分析2221117(201319(3))1()234nnN广东理第:问求证变式2保留第一项,从第二项开始放缩思路二22111nn左边11111(1)221nn111(1)22274()n1111111(1)()()232411nn111()211nn(2)n将通项放得比变式1更小一点.当n=1时,不等式显然也成立.变式3的结论比变式2更强,要达目的,须将变式2放缩的“度”进一步修正,如何修正?分析保留前两项,从第三项开始放缩思路一左边1111111()42231nn11111()4223353()n2111111111()()()22243511nn22211151()233nnN求证:变式322111nn111()211nn(3)n将变式2思路二中通项从第三项才开始放缩.当n=1,2时,不等式显然也成立.变式3的结论比变式2更强,要达目的,须将变式2放缩的“度”进一步修正,如何修正?分析保留第一项,从第二项开始放缩思路二221114nn左边1112()321n1123253()n11111112()()()35572121nn112()2121nn(2)n将通项放得比变式2思路二更小一点.22211151()233nnN求证:变式32441n当n=1时,不等式显然也成立.评注对21n放缩方法不同,得到的结果也不同.显然57234,故后一个结论比前一个结论更强,也就是说如果证明了变式3,那么变式1和变式2就显然成立.对21n的3种放缩方法体现了三种不同“境界”,得到211nkk的三个“上界”,其中53最接近22116kk(欧拉常数).【方法总结之二】放缩法证明与数列求和有关的不等式的过程中,很多时候要“留一手”,即采用“有所保留”的方法,保留数列的第一项或前两项,从数列的第二项或第三项开始放缩,这样才不致使结果放得过大或缩得过小.牛刀小试(变式练习1)*22211151()35(21)4nnN求证:证明21(21)n111(1)4n114254n1111111(1)()()42231nn14(1)nn(2)n2144nn111()41nn左边当n=1时,不等式显然也成立.223311113()323232322nnnN求证:变式123111117()3232323214nnN求证:练习.2311115()212121213nnN求证:例3223`1117()42424224nnnN变求证:式2分析思路左边32nn211111333n223311113()323232322nnnN求证:例3利用指数函数的单调性放缩为等比模型∵23[1()]3nn123[1()]3n13n∴*111()323nnnnN11331213n左边不能直接求和,考虑将通项放缩为等比模型后求和,哪个等比数列的和接近32?分析左边32n21111(1)733n23111117()3232323214nnN求证:例3变式∵2=3(1)3nn223(1)3n273n∴211173(2)nnan1311(1)143n(2)n保留第一项,从第二项开始放缩左边不能直接求和,能否仿照例4的方法将通项也放缩为等比模型后求和?3171141(2)4n当n=1时,不等式显然也成立.【方法总结之三】一般地,形如nnnaab或nnaab(这里1ab)的数列,在证明12111nkaaa(k为常数)时都可以提取出na利用指数函数的单调性将其放缩为等比模型.分析左边32n21111(1)733n23111117()3232323214nnN求证:例3变式∵2=3(1)3nn223(1)3n273n∴211173(2)nnan1311(1)143n(2)n保留第一项,从第二项开始放缩左边不能直接求和,能否仿照例4的方法将通项也放缩为等比模型后求和?3171141(2)4n当n=1时,不等式显然也成立.左边32nn012111115333n2233111113()3232323210nnnN(变求证牛刀小试:式练习2)∵23[1()]3nn223[1()]3n253n∴21113253nnn231131110310n(2)n(2)n当n=1时,不等式显然也成立.ln2ln3ln123nnn:3.求证*311111111314732nnNn求证:2.13211()24221nnnnN求证:例41.1niiafn二(形如)
本文标题:数列不等式的放缩法
链接地址:https://www.777doc.com/doc-6057632 .html