您好,欢迎访问三七文档
NIKHEF/97-017HD-THEP-97-6GravitationalWavesandBlackHolesAnIntroductiontoGeneralRelativityJ.W.vanHoltenNIKHEF,P.O.Box418821009DBAmsterdamNLAbstractIntheselecturesgeneralrelativityisoutlinedastheclassical eldtheoryofgravity,emphasizingphysicalphenomenaratherthanformalism.Dynamicalsolutionsrepresentingtravelingwavesaswellasstationary eldslikethoseofblackholesarediscussed.Theirpropertiesareinvestigatedbystudyingthegeodesicstructureofthecorrespondingspace-times,asrepresentingthemotionofpoint-liketestparticles.Theinteractionbetweengravitational,electro-magneticandscalar eldsisalsoconsidered.c 1997LecturespresentedattheUniversityofHeidelberg,february1997Contents1GravityandGeometry11.1Thegravitationalforce.............................11.2Fields......................................21.3Geometricalinterpretationofgravity.....................31.4Curvature....................................51.5TheEinsteinequations.............................71.6Theactionprinciple..............................92Geodesics112.1Curvesandgeodesics..............................112.2Canonicalformulation.............................152.3Actionprinciples................................172.4SymmetriesandKillingvectors........................182.5Phase-spacesymmetriesandconservationlaws...............222.6Example:therigidrotor............................243Dynamicsofspace-time273.1Classicalsolutionsofthegravitational eldequations............273.2Planefrontedwaves..............................303.3Natureofthespace-time............................363.4Scatteringoftestparticles...........................393.5Generalplanarwaves..............................413.6Thegravitational eldofalightwave.....................443.7Symmetrybreakingasasourceofgravitationaloscillations........504Blackholes574.1Horizons....................................574.2TheSchwarzschildsolution..........................584.3Discussion...................................614.4TheinterioroftheSchwarzschildsphere...................634.5Geodesics....................................664.6ExtendedSchwarzschildgeometry......................704.7Chargedblackholes..............................74iii4.8Spinningblackholes..............................774.9TheKerrsingularity..............................834.10Black-holesandthermodynamics.......................85Chapter1GravityandGeometry1.1ThegravitationalforceGravityisthemostuniversalforceinnature.Asfaraswecantellfromobservationsandexperimentseveryobject,everyparticleintheuniverseattractsanyotheronebyaforceproportionaltoitsmass.Forslowmovingbodiesatlargedistancesthisisacentralforce,inverselyproportionaltothesquareofthedistance.Astheactionisreciprocal,andsinceaccordingtoNewtonactionandreactionforcesareequalinmagnitude,theexpressionforthegravitationalforcebetweentwoobjectsofmassM1andM2atadistanceRisthendeterminedtohavetheuniqueformF=GM1M2R2:(1.1)Theconstantofproportionality,Newton’sconstantofgravity,hasdimensionsofaccelera-tionperunitofmasstimesanarea.Thereforeitsnumericalvalueobviouslydependsonthechoiceofunits.IntheMKSsystemthisisG=6:67259(85) 10 11m3kg 1s 2:(1.2)Itisalsopossible,andsometimesconvenient,to xtheunitofmassinsuchawaythatNewtonsconstanthasthenumericalvalueG=1.Inthenaturalsystemofunits,inwhichalsothevelocityoflightandPlanck’sconstantareunity:c= h=1,thisunitofmassisthePlanckmassmP:mP=q hc=G=2:17671 10 8kg=1:221047 1019GeV=c2:(1.3)Newton’slawofgravity(1.1)isvalidforanytwomassivebodies,aslongastheyarefarapartanddonotmovetoofastwithrespecttooneanother.Inparticular,itdescribesthemotionsofcelestialbodieslikethemooncirclingtheearth,ortheplanetsorbitingthesun,aswellasthoseofterrestrialobjectslikeapplesfallingfromatree,orcanonballs12infree ight.EversinceNewtonthisuni cationofcelestialandterrestialmechanicshascontinuedtoimpresspeopleandhashadatremendousimpactonourviewoftheuniverse.Itistheoriginandbasisforthebeliefinthegeneralvalidityofphysicallawsindependentoftimeandplace.1.2FieldsAlthoughasaforcegravityisuniversal,Newton’slaw(1.1)itselfhasonlylimitedvalidity.LikeCoulomb’slawfortheelectrostaticforcebetweentwo xedcharges,Newton’slawholdsstrictlyspeakingonlyforstaticforcesbetweenbodiesatrest.Moreover,andunliketheelectricforces,therearemodi cationsatsmaller, nitedistanceswhichcanbeobservedexperimentally.Forexample,ifthegravitationalforcewouldhaveapure1=R2dependence,theorbitsofparticlesaroundaveryheavycentralbodywouldbeconicsections:ellipses,parabola’sorhyperbola’s,dependingontheenergyandangularmomentum,inaccordancewithKepler’slaws.TheobservationofanexcessintheprecessionoftheperihelionoftheorbitofMercuryaroundthesunbyLeVerrierin1845,andimprovedbyNewcombin1882[1],wasoneofthe rstclearindicationsthatthisisactuallynotthecase,andthatthegravitationalforceismorecomplicated.Theexactformofthegravitationalforcesexertedbymovingbodiesisaproblemwithmanysimilaritiestotheanalogousprobleminelectrodynamics.Theunderstandingofelectrodynamicalphenomenagreatlyimprovedwiththeintroductionoftheconceptoflocal eldofforce.Thisconceptreferstothefollowingcharacteristicsofe
本文标题:Gravitational Waves and Black Holes An Introductio
链接地址:https://www.777doc.com/doc-6071314 .html