您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 其它相关文档 > 计算机组成原理TEC-4实验手册(含实验步骤)完整6个实验-三个程序设计
TEC—4计算机组成原理实验系统教师实验指导书清华大学科教仪器厂2004年11月1目录前言2TEC—4计算机组成原理实验系统3基本实验运算器组成实验13双端口存储器原理实验18数据通路组成实验22微程序控制器组成实验28CPU组成和机器指令执行实验40中断原理实验45课程设计硬布线控制器的设计与调试50流水微程序控制器的设计与调试61流水硬布线控制器的设计与调试70附录782前言计算机组成原理是大学计算机专业的一门专业基础课程。清华同方股份有限公司和北京邮电大学白中英教授合作,开发出TEC—4计算机组成原理实验系统。在这个实验设备上,既能够做计算机组成原理课程的实验,又能够进行计算机系统结构课程的流水实验。该实验设备计算机模型简单、实用,运算器数据通路、控制器、控制台各部分划分清晰,为学生提供了很多的动手条件,有利于提高学生学习的主动性和创造性。为了更好地使用TEC—4计算机组成原理实验系统,我们编写了这本《教师用实验指导书》。它是TEC—4计算机组成原理实验系统的配套资料。本书提供了9个实验,其中6个基本实验,3个课程设计。对每个实验提供了接线图、实验步骤及实验结果;对3个课程设计提供了参考方案。当然,每个实验的接线方法或者源程序绝不是唯一的,实验结果也会有所不同。本书提供的接线图和源程序只是许多接线方法、源程序中的一种,只能作为参考。这些接线图、源程序和实验结果都经过实际实验验证。本书的目的是希望减少教师设计、准备、调试实验的劳动,让教师把主要精力集中在提高教学质量上。各位老师在使用中如果发现错误和不妥之处,欢迎提出宝贵意见,以便将来改进。除了本书外,TEC—4计算机组成原理实验系统还有另一本配套资料《计算机组成原理题解、题库和实验》,这是一本科学出版社出版的学生用书。该书由北京邮电大学的白中英教授和我们共同编写,可作为TEC—4计算机组成原理实验系统的使用说明书。两本资料配合使用,效果更好。敬请读者提出宝贵意见。清华同方股份有限公司教学仪器设备公司2001年1月3第一节TEC—4计算机组成原理实验系统TEC—4计算机组成原理实验系统由北京邮电大学计算机学院、清华同方教学仪器设备公司、深圳拓普威电子技术有限公司联合研制。它是一个8位计算机模型实验系统,可用于大专、本科、硕士研究生计算机组成原理课程、计算机系统结构课程的教学实验,对提高学生的动手能力、提高学生对计算机整体和各组成部分的理解、提高学生的计算机系统综合设计能力都会有很大帮助。一、TEC—4计算机组成原理实验系统特点1.计算机模型简单、实用,运算器数据通路、控制器、控制台各部分划分清晰。2.计算机模型采用了数据总线和指令总线双总线体制,能够实现流水控制。3.控制器有微程序控制器或者硬布线控制器两种类型,每种类型又有流水和非流水两种方案。4.寄存器堆由1片ispLSI1016组成,运算器由1片ispLSI1024组成,设计新颖。5.实验台上包括了1片在系统编程芯片ispLSI1032,学生可用它实现硬布线控制器。6.该系统能做运算器组成、双端口存储器、数据通路、微程序控制器、中断、CPU组成与机器指令执行、流水微程序控制器、硬布线控制器、流水硬布线控制器等多种实验。7.电源部分采用模块电源,重量轻,具有抗电源对地短路能力。8.采用自锁紧累接接线方式,接线可靠。二、TEC—4计算机组成原理实验系统的组成TEC—4计算机组成原理实验系统由下述六部分组成:1.控制台2.数据通路3.控制器4.用户自选器件试验区5.时序电路6.电源部分下面分别对各组成部分予以介绍。三、电源电源部分由一个模块电源、一个电源插座、一个电源开关和一个红色指示灯组成。电源模块通过四个螺栓安装在实验台下面。它输出+5V电压,最大负载电流3安培,内置自恢复保险功能,具有抗+5V对地短路能力。电源插座用于接交流220伏市电,插座内装有保险丝。电源开关用于接通或者断开交流220伏市电。当电源模块输出+5V时,点亮+5V红色指示灯。四、时序发生器时序发生器产生计算机模型所需的时序。时序电路由一个1MHz晶体振荡器、2片GAL22V10(U6和U7)组成,位于控制存储器的右边。根据本机设计,执行一条微指令需要4个时钟周期T1、T2、T3、T4,执行一条指令通常需要取指、送操作数、运算、写结果四个节拍,因此本机的基本时序如下:4图中,MF是晶体振荡器产生的1MHz基本时钟,T1、T2、T3、T4是数据通路和控制器中各寄存器的时钟脉冲,印制板上已将它们和有关的寄存器连接。T1、T2、T3、T4既供微程序控制器时使用,也供硬布线控制器使用。W1、W2、W3、W4只供硬布线控制器作指令节拍信号使用。五、数据通路数据通路的设计是TEC—4计算机组成原理实验系统最有特色的部分。首先它采用了数据总线和指令总线双总线形式,使得流水实验能够实现。它还使用了大规模在系统可编程器件作为运算器和寄存器堆,使得设计简单明了,可修改性强。数据通路位于实验系统的中部。图4是数据通路总体图,下面介绍图中个主要部件的作用。1.运算器ALU运算器ALU由一片ispLSI1024(U47)组成,在选择端S2、S1、S0控制下,对数据A和B进行加、减、与、直通、乘五种运算,功能如下:表1运算器功能表选择操作S2S1S0000A&B001A&A(直通)010A+B011A-B100A(低4位)XB(低4位)进位C只在加法运算和减法运算时产生。加运算中,C表示进位;减运算中,C代表借位。加、减运算产生的进位(借位)在T4的上升沿送入C寄存器保存。与、乘、直通操作MFT1T2T3T4W1W2W3W4图3基本时序图5ALUDR1DR2MUX1MUX2RFERM1M2S2S1S0T4RS1、RS0WR1、WR0RD1、RD0WRD(T2)SW_BUS#LDER(T4)AR2MUX3AR1RAM数据端口指令端口CERCEL#LRW(T3)LDAR2(T2)M3LDAR1(T4)AR1_INCIARIAR_BUS#LDIARPCALU2R4MUX4LDR4(T2)M4IRLDIR(T4)C、INTQRS1、RS0控制器INSDBUSC控制信号LDPC(T4)RD1、RD0WR1、WR0...LDDR2(T3)DBUSDBUSLDDR1(T3)RS_BUS#ALU_BUSSW0—SW7图4数据通路总体图B端口A端口PC_ADDA端口B端口PC_INC6不影响进位C的状态,即进位C保持不变。当ALU_BUS=1时,运算结果送往数据总线DBUS。加、减运算产生的进位(借位)C与控制台的C指示灯相连。2.DR1和DR2DR1和DR2是运算操作数寄存器,DR1和ALU的B数据口相连,DR2和ALU的A数据口相连。DR1和DR2各由2片74HC298(U23、U24、U21、U22)组成。U23是DR1的低4位,U24是DR1的高4位;U21是DR2的低4位,U22是DR2的高4位。当M1=0且LDDR1=1时,在T3的下降沿,DR1接收来自寄存器堆B端口的数据;当M1=1且LDDR1=1时,在T3的下降沿,DR1接收来自数据总线D_BUS的数据。当M2=0且LDDR2=1时,在T3的下降沿,DR2接收来自寄存器堆A端口的数据;当M2=1且LDDR2=1时,在T3的下降沿,DR2接收来自数据总线DBUS的数据。3.多端口通用寄存器堆RF多端口通用寄存器堆RF由1片ispLSI1016(U32)组成,它的功能和MC14580类似。寄存器堆中包含4个8位寄存器(R0、R1、R2、R3),有三个控制端口。其中两个端口控制读操作,一个端口控制写操作,三个端口可同时操作。RD1、RD0选择从A端口读出的寄存器,RS1、RS0选择从B端口读出的寄存器,WR1、WR0选择被写入的寄存器。WRD控制写操作。当WRD=0时,禁止写操作;当WRD=1时,在T2的上升沿将来自ER寄存器的数据写入由WR1、WR0选中的寄存器。A端口的数据直接送往操作数寄存器DR2,B端口的数据直接送往操作数寄存器DR1。除此之外,B端口的数据还通过1片74HC244(U15)送往数据总线DBUS。当RS_BUS#=0时,允许B端口的数据送到数据总线DBUS上;当RS_BUS#=1时,禁止B端口的数据送到数据总线DBUS。4.暂存寄存器ER暂存寄存器ER(U14)是1片74HC374,主要用于暂时保存运算器的运算结果。当LDER=1时,在T4的上升沿,将数据总线DBUS上的数据打入暂存寄存器ER。ER的输出送往多端口通用寄存器堆RF,作为写入数据使用。5.开关寄存器SW_BUS开关寄存器SW_BUS(U38)是1片74HC244,用于将控制台开关SW7—SW0的数据送往数据总线DBUS。当SW_BUS#=1时,禁止开关SW7—SW0的数据送往数据总线DBUS;当SW_BUS#=0时,允许开关SW7—SW0的数据送往数据总线DBUS。6.双端口存储器RAM双端口存储器由一片IDT7132(U36)及少量附加控制电路组成。IDT7132是2048字节的双端口静态随机存储器,本机实际使用256字节。IDT7132两个端口可同时进行读、写操作。在本机中,左端口的数据连接数据总线DBUS,可进行读、写操作,右端口数据和指令总线INS连接,输出到指令寄存器IR,作为只读端口使用。存储器IDT7132有6个控制引脚:CEL#、LRW、OEL#、CER#、RRW、OER#。CEL#、LRW、OEL#控制左端口读、写操作,CER#、RRW、OER#控制右端口读、写操作。CEL#为左端口选择引脚,低有效,为高时禁止左端口操作;LRW为高时,左端口进行读操作,LRW为低时,左端口进行写操作;OER#为低时,将左端口读出的数据放到数据总线DBUS上。CER#、RRW、OER#控7制右端口读、写操作的方式与CEL#、LRW、OER#控制左端口读、写操作的方式类似,不过右端口读出的数据放到指令总线上而不是数据总线上。本机设计中,OER#已固定接地,RRW固定接高电平,CER#由CER反相产生。当CER=1时,右端口读出数据,并放到指令总线INS上;当CER=0时,禁止右端口操作。左端口的OEL#由LRW经反相产生,不需单独控制。当CEL#=0且LRW=1时,左端口进行读操作;当CER#=0且LRW=0时,在T3的上升沿开始进行写操作,将数据总线DBUS上的数据写入存储器。7.地址寄存器AR1和AR2地址寄存器AR1(U37)和AR2(U27、U28)提供双端口存储器的地址。AR1是1片GAL22V10,具有加1功能,提供双端口存储器左端口的地址。AR1从数据总线DBUS接收数据。AR1的控制信号是LDAR1和AR1_INC。当AR1_INC=1时,在T4的上升沿,AR1的值加1;当LDAR1=1时,在T4的上升沿,将数据总线DBUS的数据打入地址寄存器AR1。AR2由2片74HC298组成,有两个数据输入端,一个来自程序计数器PC,另一个来自数据总线DBUS。AR2的控制信号是LDAR2和M3。M3选择数据来源,当M3=1时,选中数据总线DBUS;当M3=0时,选中程序计数器PC。LDAR2控制何时接收地址,当LDAR2=1时,在T2的下降沿将选中的数据源上的数据打入AR2。8.程序计数器PC、地址加法器器ALU2、地址缓存器R4程序计数器PC、地址加法器器ALU2、地址缓存器R4联合完成三种操作:PC加载,PC+1,PC+D。R4是一个由2片74HC298(U25
本文标题:计算机组成原理TEC-4实验手册(含实验步骤)完整6个实验-三个程序设计
链接地址:https://www.777doc.com/doc-6071692 .html