您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018数学中考专题训练
2018数学中考专题训练编写:李老师专题一:反比例函数1.如图,,线段AB的两端点在函数(x>0)的图象上,AC⊥x轴于点C,BD⊥y轴于点D,线段AC,BD相交于点E.当DO=2CO时,图中阴影部分的面积等于________.2.如图,在函数(x<0)和(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,,,则线段AB的长度等于________.3.如图,矩形ABCD的对角线AC经过原点O,矩形的边分别平行于坐标轴,点D(1,1)在反比例函数的图象上.(1)求反比例函数的关系式;(2)判断点B是否在的图象上;(3)若P为x正半轴上一动点,OP=x,过P作x轴的垂线,交的图象于Q,过Q作y轴的垂线,垂足为M.设矩形OPQM与矩形ABCD在第一象限内不重合部分的面积为S,求出S关于x的函数关系式.4.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为________.5.如图,已知反比例函数(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.6.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得△O′A′B′.(1)当m=4时,如图②.若反比例函数的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数的图象经过点A′及A′B′的中点M,求m的值7.如图,已知函数(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当时,求CE的长.8.如图,正方形AOCB在平面直角坐标系xOy中,点O为原点,点B在反比例函数(x>0)的图象上,△BOC的面积为8.(1)求反比例函数的关系式.(2)若动点E从A开始沿AB向B以每秒1个单位长度的速度运动,同时动点F从B开始沿BC向C以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t(s)表示,△BEF的面积用S表示,求出S关于t的函数关系式,并求出当运动时间t取何值时,△BEF的面积最大?(3)当运动时间为s时,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.9.如图,直线y=x+b(b≠0)交坐标轴于A,B两点,交双曲线于点D,过D作两坐标轴的垂线DC,DE,连接OD.(1)求证:AD平分∠CDE;(2)对任意的实数b(b≠0),求证:AD·BD为定值;(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.10.如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).11.如图,已知函数与反比例函数(x>0)的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C.(1)求点C的坐标;(2)若,求反比例函数的解析式.12如图是反比例函数和(k1<k2)在第一象限内的图像,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2-k1的值为________.13.如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.14.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A.4B.﹣4C.8D.﹣815.如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于二、四象限的A、B两点,与x轴交于C点.已知A(﹣2,m),B(n,﹣2),tan∠BOC=,则此一次函数的解析式为_________.16.如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.17.如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限)若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.18.在平面直角坐标系中,函数y=mx(m>0)的图象经过点A(1,4)、B(a,b),其中a>1.过点A作x轴的垂线,垂足为C;过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接AB、AD、BC、CD.(1)求m的值;(2)求证:CD∥AB;(3)当AD=BC时,求直线AB的函数解析式.专题二:二次函数1.(2015届光明二模第一道9分题)如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.2.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.1)求该二次函数的解析式及点C的坐标;2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.3.如图,已知一次函数的图象l与二次函数y2=-x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG都始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求一点P,使PD+PE最小,求出点P的坐标4.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D。(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由。5.如图,在平面直角坐标系中,OA=2,OB=4,将△OAB绕点O顺时针旋转90°至△OCD,若已知抛物线2yaxbxc过点A,D,B.(1)求此抛物线的解析式;(2)连接DB,将△COD沿射线DB平移,速度为每秒2个单位.①经过多少秒O点平移后的O′点落在线段AB上?②设DO的中点为M,在平移的过程中,点M、A、B能否构成等腰三角形?若能,求出构成等腰三角形时M点的坐标;若不能,请说明理由.6.(2011•广东中考最后一题)如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.7.(2015•南开一模最后一题)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P作PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?8.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.9.已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.10.(2012·广东最后一题)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).专题三:几何与动点1.(2013·广东最后一题)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中
本文标题:2018数学中考专题训练
链接地址:https://www.777doc.com/doc-6087704 .html