您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 3整式的加减(公开课)
张知识结构:整式的加减整式的概念整式的计算单项式多项式系数次数项,项数,常数项,最高次项次数同类项与合并同类项去括号化简求值用字母来表示生活中的量定义:单项式中的_________。次数:1.当单项式的系数是1或-1时,“1”通常省略不写。单项式:系数:数字或字母的乘积由_________________组成的式子。单独的______或________也是单项式。单项式中的__________________.数字因数所有字母的指数和一个数一个字母注意的问题:2.当式子分母中出现字母时不是单项式。3.圆周率π是常数,不要看成字母。4.当单项式的系数是带分数时,通常写成假分数。5.单项式的系数应包括它前面的性质符号。6.单项式次数是指所有字母的次数的和,与数字的次数没有关系。7.单独的数字不含字母,规定它的次数是零次.定义:几个__________.常数项:多项式中_______________.多项式的次数:_________________________.项:组成多项式中的_____________.有几项,就叫做_________.1.在确定多项式的项时,要连同它前面的符号,2.一个多项式的次数最高项的次数是几,就说这个多项式是几次多项式。3.在多项式中,每个单项式都是这个多项式的项,每一项都有系数,但对整个多项式来说,没有系数的概念,只有次数的概念。多项式单项式的和每一个单项式几项式不含字母的项多项式中次数最高的项的次数。注意的问题:同类项的定义:(两相同)合并同类项概念:_________________________.合并同类项法则:2._________________不变。2._________________相同。1.____相同,字母相同的字母的指数也1.______相加减;字母和字母的指数系数同类项注意:几个常数项也是______同类项。(两无关)2.与__________无关。1.与____无关系数字母的位置把多项式中的同类项合并成一项2.若与是同类项,则m+n=___.nyx322yxm4.若,则m+n-p=______45145372abbpabanm543.若与的和是一个单项式,则=___.46aayxbyx43ba-41.下列各式中,是同类项的是:___________322yx23yx①与yzx2yx2②与mn10mn32③与5)(a5)3(④与yx23⑤与25.0yx⑥-125与③⑤⑥整式的加减混合运算步骤(有括号先去括号)1.找同类项,做好标记。2.利用加法的交换律和结合律把同类项放在一起。3.利用乘法分配律计算结果。4.按要求按“升”或“降”幂排列。找般并排1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。“去括号,看符号。是‘+’号,不变号,是‘-’号,全变号”一:去括号二:计算(按照先小括号,再中括号,最后大括号的顺序)一、概念中的易错题二、运算中的易错题易错点总结:1,单项式的定义例1,下列各式子中,是单项式的有______________(填序号);;21;2;;;21;xxxxyyxa⑦⑥⑤④③②①①、②、④、⑦注意:1,单个的字母或数字也是单项式;2,用加减号把数字或字母连接在一起的式子不是单项式;3,只用乘号把数字或字母连接在一起的式子仍是单项式;4,当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:“π”当作数字,而不是字母)2,单项式的系数与次数单项式系数次数例2指出下列单项式的系数和次数;a32ab32bca732bayx22211313167543注意:1,字母的系数“1”可以省略的,但不代表没有系数(次数也是同样道理);2,有分母的单项式,分母中的数字也是单项式系数的一部分;3,注意“π”不是字母,而是数字,属于系数的一部分;4,计算次数的时候并不是简单的见到指数就相加,注意单项式的次数指的是字母的指数和;3,多项式的项数与次数例3下列多项式次数为3的是()12..1.165.3222222xyxDbabbaCxxBxxAC例4请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,“π”当作数字,而不是字母;,常数项是项式,最高次项是次是;,常数项是项式,最高次项是次是____________________________31)2(____________________________2)1(223325yxxxyyx四三3xy52四三322yx314,书写格式中的易错点例5下列各个式子中,书写格式正确的是()3.1.3.3.211..2baFabEaDaCabBbaA1、代数式中用到乘法时,若是数字与数字乘,要用“×”若是数字与字母乘,乘号通常写成”.”或省略不写,如3×y应写成3·y或3y,且数字与字母相乘时,字母与字母相乘,乘号通常写成“·”或省略不写。2、带分数与字母相乘,要写成假分数3、代数式中出现除法运算时,一般用分数写,即用分数线代替除号。4、系数一般写在字母的前面,且系数“1”往往会省略;F例6王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为______人。易错点:结果不进行化简,直接写).521(mm点拨:结果中有它们是同类项,应合并以保证最后的结果最简.正确的写法是,21,mm).523(m1,同类项的判定与合并同类项的法则:例1判断下列各式是否是同类项?323232)3(xyyx与22102)2(与2232)4(yxyx与323222)1(yxba与点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同,相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类项;对于(2),虽然好像它们的次数不一样,但其实它们都是常数项,所以,它们都是同类项;对于(4),虽然它们的系数不同,字母的顺序也不同,但它依然满足同类项的定义,是同类项;答:(2)、(4)是同类项,(1)(3)不是同类项;例2下列合并同类项的结果错误的有_______________.;0;212213;123;527;642;523222222532ababxxxabababababxxxaaa⑥⑤④③②①①、②、③、④、⑤注意:1,合并同类项的法则是把同类项的系数相加,字母和字母的次数不变;2,合并同类项后也要注意书写格式;3,如果两个同类项的系数互为相反数,那么合并同类项后,结果得____;0例3合并同类项:222222223)2(233123)1(bbabbaayxxyxyyx+---小明的解法:yx2)233123()1(解:原式=yx261=(1)错在把所有项都当作同类项了;)312()233()1(2222xyxyyxyx解:原式=正确的解法:223523xyyx=例3合并同类项:222222223)2(233123)1(bbabbaayxxyxyyx+---小明的解法:)22()()3()2(22bbbbaaa解:原式=ba2=(2)错在把结合同类项时弄错了符号;)22()()3()2(22bbbbaaa解:原式=正确的解法:24ba=总之,合并同类项现要找出式子中的同类项,并把它们写在一起,最后合并,注意同类项的系数是带符号的。2,去括号中的易错题:1,判断下列各式是否正确:dcbadcba)()1(√×bacbac2)(2)2(×2343)2(43)3(22xxxx()()()×cbacba)()4(()去括号时,1,注意括号外面的符号,括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不用变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。2,注意外面有系数的,各项都要乘以那个系数;练一练:)2(3)22)(2()3()123)(1(222222abbaabbaxxxx234)1(2xx原式=解:224)2(abba原式=1,化简下列各式:整式的加减一般步骤是(1)如果有括号就先去括号,(2)然后再合并同类项.4,多重括号化简的易错题]2)1(32[3,1222xxxx化简:]2332[3222xxxx解:原式=22223323xxxx=32)233(222xxxx=3242xx=注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;3,化简求值中的易错题:;2)643(31)14(3,1232xxxxx的值,其中求多项式2343123232xxxx解:原式=2312343223xxxx=1123523xxx=(先去括号)(降幂排列)(合并同类项,化简完成)当x=-2时(代入)1)2(12)2(35)2(23原式=(代入时注意添上括号,乘号改回“×”)1243208=3239=1.去掉下列各式中的括号。(1)8m-(3n+5)(2)n-4(3-2m)(3)2(a-2b)-3(2m-n)=8m-3n-5=n-12+8m=2a-4b-6m+3n2.化简:-(3x-2y+z)-[5x-x+2y-z-3x]解:原式=-(3x-2y+z)-[5x-(x-2y+z)-3x]=-(3x-2y+z)-[x+2y-z]=-(3x-2y+z)-[(5x-x-3x)+2y-z]=-3x+2y-z-x-2y+z=(-3x-x)+(2y-2y)+(-z+z)=-4x1,“A+2B”类型的易错题:例1若多项式计算多项式A-2B;;12,12322xxBxxA)12(2)123(222xxxxBA解:22412322xxxx21224322xxxx1472xx注意:列式时要先加上括号,再去括号;例2一个多项式A加上得,求这个多项式A?2532xx3422xx342)253(22xxxxA解:因为)253(34222xxxxA所以25334222xxxxA23543222xxxxA12xxA注意:我们在移项的时候是整体移项,不要漏了添上括号;2,实际问题中的易错题:例1某种手机卡的市话费上次已按原收费标准降低了m元/分钟,现在再次下调20%,使收费标准为n元/分钟,那么原收费标准为().分钟元分钟元分钟元分钟元/)51.(/)51.(/)45.(/)45.(mnDmnCmnBmnAB点拨:为了弄清各数之间的关系,我们可以借助方程来求解.假设原收费标准为每分钟x元,可得:解得.应选B.,)%)(201(nmxmnx45例2若长方形的一边长为a+2b,另一边长比它的3倍少a-b,求这个长方形的周长?分析:如果直接列式的话,非常麻烦,我们可以先求出另一边长,再求周长,这样就比较容易求出答案;解:一边长为:a+2b;另一边长为:3(a+2b)-(a-b)=3a+6b-a+b=3a-a+6b+b=2a+7b;周长为:2(a+2b+2a+7b)=2(a+2a+2b+7b)=2(3a+9b)=6a+18b;答:长方形的周长为6a+18b从错误中吸取教训,从失败中取得进步,完善完整知识网络,我将会成为最棒的!31333112222xxxxx)3133()31()12(222xxxxx3.求当x=时,多项式32的值。解:原式==)313311()()32(222xx
本文标题:3整式的加减(公开课)
链接地址:https://www.777doc.com/doc-6101419 .html