您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 变矩器结构与工作原理 图文
两个相互间没有刚性连接的叶轮,同样可以进行能量的传递发动机曲轴凸缘上装有外壳,泵轮与外壳连接(或焊接)在一起,随曲轴一起转动,为液力偶合器的主动部分。与泵轮相对安装的涡轮,与输出轴连接在一起,为液力变矩器的从动部分。工作原理:液压油就靠泵轮内产生的离心力而冲向涡轮,并在泵轮与涡轮之间作循环流动,于是就将在泵轮内获得的圆周运动的能量传给涡轮,驱动涡轮旋转而输出(1)“涡流”的产生当泵轮随飞轮转动时,由于离心力的作用,液体沿泵轮叶片间的通道向外缘流动,外缘油压高于内缘油压,油液从泵轮外缘冲向涡轮外缘,又从涡轮内缘流入泵轮内缘,可见在轴向断面(循环圆)内,液体流动形成循环流,称为“涡流”。(2)环流的产生因涡流的产生,液体冲向涡轮使两轮间产生牵连运动,涡轮产生绕轴旋转的扭矩。可见,循环圆内的液体绕轴旋转形成“环流”。上述两种油流的合成,形成一条首尾相接的螺旋流。只有当涡轮的扭矩大于汽车的行驶阻力矩时,汽车才能行驶。(3)油液流动(螺旋形路线)耦合器传动特点:如果不计液力损失,传给泵轮的输入转矩与涡轮上的输出转矩相等液力偶合器的传动效率为涡轮轴上的输出功率Pt与泵轮上的输入功率Pp之比用η表示。η=Pt/Pp=Mt·nt/(Mp·np)因:Mp=Mt故:η=nt/np=i式中:np—泵轮转速;nt—涡轮转速;i—液力偶合器的传动比,即输出轴转速与输入轴转速之比液力耦合器优缺点:耦合器只能传递扭矩,但“软连接”给汽车带来多方面的好处:①在没有附加其他机械操纵装置的情况下,能够通过它平稳地切断和接通发动机和驱动轮之间的动力传递,能够很好地适应汽车平稳起步的要求。②“软连接”可以通过液体为介质,吸收传动系统的冲击和振动,延长零部件的寿命和减少噪声由于液力偶合器不能改变扭矩的大小,结构复杂、成本高、效率低,故装有此自动变速器的车在低、高速行驶时,油耗非常大。缺点:1.结构由泵轮、涡轮、导轮组成与变矩器的区别和偶合器相比,变矩器在结构上多了导轮(stator)导轮通过导轮座固定于变速器壳体上1.泵轮:泵轮与变矩器壳体连成一体,其内部径向装有许多扭曲的叶片,叶片内缘则装有让变速器油液平滑流过的导环。变矩器壳体与曲轴后端的飞轮相连接。2.涡轮:涡轮上也装有许多叶片。但涡轮叶片的扭曲方向与泵轮叶片的扭曲方向相反。涡轮中心有花键孔与变速器输入轴相连。泵轮叶片与涡轮叶片相对安装,中间有3~4mm的间隙。3.导轮:导轮位于泵轮与涡轮之间,通过单向离合器安装在与自动变速器壳体连接的导管轴上。它也是由许多扭曲叶片组成的,通常由铝合金浇铸而成,其目的是为了变矩器在某些工况下具有增大扭矩的功能。导轮结构各工作轮用铝合金精密制造,或用钢板冲压焊接而成;泵轮:与液力变矩器壳连成一体,用螺栓固定在发动机曲轴后端的凸缘或飞轮上,壳体做成两半,装配后焊成一体(有的用螺栓连接);使发动机机械能液体能量涡轮:通过从动轴与变速器的其他部件相连;将液体能量涡轮轴上机械能导轮:则通过导轮座与变速器的壳体相连,所有工作轮在装配后,形成断面为循环圆的环状体。通过改变工作油的方向而起变矩作用2.工作原理发动机运转时带动液力变矩器的壳体和泵轮一同旋转,泵轮内的工作油在离心力的作用下,由泵轮叶片外缘冲向涡轮,并沿涡轮叶片流向导轮,再经导轮叶片流回泵轮叶片内缘,形成循环的工作油。在液体循环流动过程中,导轮给涡轮一个反作用力矩,从而使涡轮输出力矩不同于泵轮输入力矩,具有“变矩”功能。导轮的作用:改变涡轮的输出力矩。泵轮涡轮导轮涡流、环流、循环圆2.工作原理受力分析受力分析3.输出转矩——随着涡轮转速的变化而变化。a.涡轮转速低时(nw=0),nBnw,液体流向导轮正面,涡轮转矩大于泵轮转矩,MD0,MW=MB+MD,b.随着涡轮转速的升高(nw0),接近0.85nB时,涡轮出口处工作油流向与导轮叶片相切,涡轮转矩等于泵轮转矩,MD=0,Mw=MB(耦合点)c.涡轮转速继续升高,涡轮出口处工作油冲击导轮叶片背面,此时涡轮转矩小于泵轮输入转矩,MD0,Mw=MB-MDd.当涡轮转速与泵轮转速(nB=nw)时,不再传递扭矩,Mw=0组成:泵轮、涡轮、导轮。不同之处:导轮通过单向离合器(one-wayoverrunningclutch)固定于变速器壳体上只允许导轮单方向旋转常见形式:(1)滚柱斜槽式(液力变矩器常用)(2)楔块式(行星齿轮变速器常用)楔块式滚柱斜槽式(1)滚柱斜槽式单向离合器(2)楔块式单向离合器传递转矩:发动机的转矩通过液力变矩器的主动元件,再通过ATF传给液力变矩器的从动元件,最后传给变速器。无级变速:根据工况的不同,液力变矩器可以在一定范围内实现转速和转矩的无级变化。自动离合:液力变矩器由于采用ATF传递动力,当踩下制动踏板时,发动机也不会熄火,此时相当于离合器分离;当抬起制动踏板时,汽车可以起步,此时相当于离合器接合。驱动油泵:ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的。涡流:从泵轮→涡轮→导轮→泵轮的液体流动环流:液体绕轴线旋转的流动变矩器不仅能传递转矩,而且能在泵轮转矩不变的情况下,随着涡轮的转速(反映着汽车行驶速度)不同而改变涡轮输出的转矩数值增矩过程:MW=Mb+Md变矩器扭矩的增大值并不是一个恒定的值,扭矩增大值与汽车的速度有关汽车起步工况汽车起步前:nw=0,nb0,nwnb(导轮固定)则Va(涡流)Vb(环流)Mw=Md+Mb涡轮转矩Mw大于泵轮的转矩Mb,即液力变矩器起了增大转矩的作用当汽车处于起步状态,变矩器具有最大的扭矩增大值,通常可达1.8-2.5倍汽车起步后开始加速(起步后的中间状态)涡轮转速nw从零逐渐增加。速度vb的增加,冲向导轮叶片的液流的绝对速度vc将随着逐渐向上倾斜,使导轮上所受转矩值逐渐减小。当涡轮和泵轮转速之比达到0.8-0.85左右时:Md=0,Mb=Mw汽车高速运行若涡轮转速nw继续增大,液流绝对速度vc的方向冲击导轮的背面,导轮转矩方向与泵轮转矩方向相反Mw=Mb-Md即变矩器输出转矩反而比输入转矩小。当nw=nb,工作液在循环圆中的流动停止,将不能传递动力。a.当nw=0时,nbnw,油液速度流向导轮的正面,Md0,Mw=Mb+Md,可见MwMb,起变矩作用。b.当nw0时,接近0.85nb转速时,油液速度与导轮叶片相切,Md=0,Mw=Mb,为耦合器(液力联轴器)。此转速称为“耦合工作点”。c.当nw≈nb时,油液速度流向导轮的背面,Md为负值,导轮欲随泵轮同向旋转,导轮对油液的反作用力冲向泵轮正面,故Mw=Mb-Md。d.当nw=nb时,循环圆内的液体停止流动,停止扭矩的传递。故nw的增大是有限度的,它与nb的比值不可能达到1,一般小于0.9。液力变矩器特性--变矩器在泵轮转速nb和转矩Mb不变的条件下,涡轮转矩Mw随其转速nw变化的规律。液力变矩器传动比i--输出转速与输入转速之比,即i=nw/nb≤1。0.8-0.9最佳。液力变矩器变矩系数--输出转矩Mw与转入转矩Mb)之比,用K表示,即K=Mw/Mb。液力变矩器特性:锁止离合器摩擦片、减震弹簧减振盘:它与涡轮连接在一起,减振盘上装有减振弹簧,在离合器接合时,可防止产生扭转振动。锁止离合器压盘:通过凸起卡在减振盘上,可在油压的作用下轴向移动。离合器壳:它与泵轮连接在一起,前盖上粘有一层摩擦材料,以增加离合器接合时的摩擦力。工作原理工作原理工作原理当锁止离合器处于分离状态时,仍具有变矩和偶合两种工作情况;当锁止离合器处于接合状态时,此时发动机功率经输入轴、液力变矩器壳体和锁止离合器直接传至涡轮输出轴,液力变矩器不起作用,这种工况称为锁止工况。既利用了液力变矩器在涡轮转速较低时具有的增扭特性,又利用了液力偶合器在涡轮转速较高时所具有的高传动效率的特性。汽车在变工况下行驶时(如起步、经常加减速),锁止离合器分离,相当于普通液力变矩器;当汽车在稳定工况下(达到耦合工况)行驶时,锁止离合器接合,动力不经液力传动,直接通过机械传动传递,变矩器效率为1。变矩器锁止离合器的主要功能是:在汽车低速时,利用变矩器低速扭矩增大的特性,提高汽车起步和坏路的加速性;在高速时,变矩器锁止离合器作用,使液力偶合(“软连接”)让位于直接的机械传动(“硬连接”),提高传动效率,降低燃油消耗。
本文标题:变矩器结构与工作原理 图文
链接地址:https://www.777doc.com/doc-6133247 .html