您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 中考百分百--备战2011中考专题(动手操作型专题)
中考百分百——备战2011中考专题(动手操作型专题)一.知识网络梳理在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了动手操作题.动手操作题是让学生在通过实际操作的基础上设计有关的问题.这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现新课程理念.操作型问题是指通过动手测量、作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情猜想和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合新课程标准特别强调的发现式学习、探究式学习和研究式学习,鼓励学生进行“微科研”活动,提倡要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想.因此.实验操作问题将成为今后中考的热点题型.题型1动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理念.二、知识运用举例(一)动手问题例1.将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是(C)(第1题)(第2题)例2.把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是(B)A.85°B.90°C.95°D.100°例3.(2006年广州市)如图(1),将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图(2)的图案,则图(2)中阴影部分的面积是整个图案面积的(D)A.122B.14C.17D.18(第3题)(第4题)例4.(2006年河南省)如图(1)所示,用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD,若AE=4,CE=3BF,那么这个四边形的面积是___________.163(二)证明问题例5.(07浙江省)如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示)(图1)(图2)(图3)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH(图4)(图5)(图6)解:(1)图形平移的距离就是线段BC的长(2分)又∵在Rt△ABC中,斜边长为10cm,∠BAC=30,∴BC=5cm,∴平移的距离为5cm.(2分)(2)∵∠130AFA,∴∠60GFD,∠D=30°.∴∠90FGD.(1分)在RtEFD中,ED=10cm,∵FD=53,(1分)∵532FCcm.(2分)(3)△AHE与△1DHB中,∵130FABEDF,(1分)∵FDFA,1EFFBFB,∴1FDFBFAFE,即1AEDB.(1分)又∵1AHEDHB,∴△AHE≌△1DHB(AAS)(1分).∴AHDH.(1分)(三)探索性问题例6.(07青岛)提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=12AD时(如图②):∵AP=12AD,△ABP和△ABD的高相等,∴S△ABP=12S△ABD.∵PD=AD-AP=12AD,△CDP和△CDA的高相等,∴S△CDP=12S△CDA.∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-12S△ABD-12S△CDA=S四边形ABCD-12(S四边形ABCD-S△DBC)-12(S四边形ABCD-S△ABC)=12S△DBC+12S△ABC.(2)当AP=13AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=16AD时,S△PBC与S△ABC和S△DBC之间的关系式为:________________;(4)一般地,当AP=1nAD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;图①PDCBAABCDP图②问题解决:当AP=mnAD(0≤mn≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________.解:⑵∵AP=13AD,△ABP和△ABD的高相等,∴S△ABP=13S△ABD.又∵PD=AD-AP=23AD,△CDP和△CDA的高相等,∴S△CDP=23S△CDA.∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-13S△ABD-23S△CDA=S四边形ABCD-13(S四边形ABCD-S△DBC)-23(S四边形ABCD-S△ABC)=13S△DBC+23S△ABC.∴S△PBC=13S△DBC+23S△ABC.⑶S△PBC=16S△DBC+56S△ABC;⑷S△PBC=1nS△DBC+1nnS△ABC;∵AP=1nAD,△ABP和△ABD的高相等,∴S△ABP=1nS△ABD.又∵PD=AD-AP=1nnAD,△CDP和△CDA的高相等,∴S△CDP=1nnS△CDA.∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-1nS△ABD-1nnS△CDA=S四边形ABCD-1n(S四边形ABCD-S△DBC)-1nn(S四边形ABCD-S△ABC)=1nS△DBC+1nnS△ABC.∴S△PBC=1nS△DBC+1nnS△ABC.问题解决:S△PBC=mnS△DBC+nmnS△ABC.PDCBA例7.(07孝感)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).(图1)(图2)请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系.设直线BM为ykx,当MBC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点)?为什么?(图3)解:(1)△BMP是等边三角形.证明:连结AN∵EF垂直平分AB∴AN=BN由折叠知AB=BN∴AN=AB=BN∴△ABN为等边三角形∴∠ABN=60°∴∠PBN=30°又∵∠ABM=∠NBM=30°,∠BNM=∠A=90°∴∠BPN=60°∠MBP=∠MBN+∠PBN=60°∴∠BMP=60°∴∠MBP=∠BMP=∠BPM=60°∴△BMP为等边三角形.(2)要在矩形纸片ABCD上剪出等边△BMP,则BC≥BP在Rt△BNP中,BN=BA=a,∠PBN=30°∴BP=cos30a∴b≥cos30a∴a≤23b.∴当a≤23b时,在矩形上能剪出这样的等边△BMP.(3)∵∠M′BC=60°∴∠ABM′=90°-60°=30°在Rt△ABM′中,tan∠ABM′=AMAB∴tan30°=2AM∴AM′=233∴M′(233,2).代入y=kx中,得k=2233=3设△ABM′沿BM′折叠后,点A落在矩形ABCD内的点为A过A作AHBC交BC于H.∵△ABM′≌△ABM′∴ABM=ABM=30°,AB=AB=2∴ABHMBH-ABM=30°.在Rt△ABH中,AH=12AB=1,BH=3∴3,1A∴A落在EF上.(图2)(图3)三、知识巩固训练1.在△ABC中,AB>BC>AC,D是AC的中点,过点D作直线z,使截得的三角形与原三角形相似,这样的直线L有_______条.2.(2006年东营)如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动______________格.3.(2006年台州)小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少用_______________分钟.4.(2006年湖南省郴州)如图,将一副七巧板拼成一只小动物,则AOB____________.5.(2005年北京海淀)印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为4页,再对折一次为8页,连续对折三次为16页,……;然后再排页码.如果想设计一本16页的毕业纪念册,请你按图1、图2、图3(图中的1,16表示页码)的方法折叠,在图4中填上按这种折叠方法得到的各页在该面相应位置上的页码.6.(2006年湖南湘西)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.___________________7.(2006年荆州)如图的梯形ABCD中,∠A=∠B=90°,且AD=AB,∠C=45°.将它分割成4个大小一样,都与原梯形相似的梯形.(在图形中直接画分割线,不需要说明)8.(2006年咸宁)在一张长为9cm,宽为8cm的矩形纸片上裁取一个与该矩形三边都相切的圆片后,余下的部分中能裁取的最大圆片的半径为________cm.9.(2005年佛山市)如图,是用形状、大小完全相同的等腰提梯形密铺成的图案,则这个AOBABDC图案中的等腰梯形的底角(指锐角)是_________度.10.(2006年枣庄)右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是______________.11.(2005年福州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3).按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是()A.都是等腰梯形B.都是等边三角形C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形12.(2006年浙江)Rt△ABC中,斜边AB=4,∠B=60º,将△ABC绕点B旋转60º,顶点C运动的路线长是()A.3πB.3π2C.πD.3π413.(2006年天门)如下图a,边长为a的大正方形中一个边长为b的小正方形,小明将图a的阴影部分拼成了一个矩形,如图b.这一过程可以验证()A、a2+b2-2ab=(a-b)2B、a2+b2+2ab=(a+b)2C、2a2-3ab+b2=(2a-b)(a-b)D、a2-b2=(a+b)(a-b)14.(2006年广安)用一把带有刻度尺的直角尺,①可以画出两条平行的直
本文标题:中考百分百--备战2011中考专题(动手操作型专题)
链接地址:https://www.777doc.com/doc-6144895 .html