您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 医学试题/课件 > R语言案例_机器学习的试验设计初探
{0üÄuR[~fÅìÆSÁOÐ&ChinaRConferenceÏð,HmÆChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f1{0ÁO{²0ÁOXÛA^ÅìÆS¥ºÄuR[~f2üÄuR[~f~1~2ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~fÁO{²0ÁOXÛA^ÅìÆS¥ºÄuR[~fo´ÁO?R.A.FisherÐ3àXÁ¡óC½ÏfOuÐ.Ô §Xzó1uЧÁO×uÐÏmJÑS0Og^±Áêþ§±¤X£8.uЧÄu.`OÚA¡OÅìuÐå5ÚOuЧ÷vó¥^þÁ5&¢lþÏf¥çÀÏfI¦OÅÁuЧíÄmW¿O£)þ!OÚ.¶áNO¤uÐChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~fÁO{²0ÁOXÛA^ÅìÆS¥ºÄuR[~fo´ÁO?Xe8±ÏLÁO'ÁCþçÀA¡&¢XÚ`zXÚèMoreaboutexperimentaldesign,pleaserefertoWuandHamada(2009)andFang,LiandSudjianto(2006).ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~fÁO{²0ÁOXÛA^ÅìÆS¥ºÄuR[~fR¥'Ø%ÁOµPackageAlgDesignPackageFrF2PackagersmPackagelhsChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~fÁO{²0ÁOXÛA^ÅìÆS¥ºÄuR[~frÅìÆSw¤ÁÅìÆS¥¦^êâ§Ø´lÁ¥´§êâI©Ôö8Úuÿ8·±|^ÁO5ÏéÐÔö8XJ·OЧ@oÅìÆS¬k½öO(, §3éõ¢S¹e§ÔöêâA¼´GÑp[¤ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~fÁO{²0ÁOXÛA^ÅìÆS¥ºÄuR[~fe5Ü©§ò¦^üÄuR[~f5yþã{o^Rº3Rp§·UéA·¤IÜ~aCOSا4·ÆéõChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2Dengetal.(2009)JASA-X=(X1;:::;Xp)TÏfþ.APY.YÑl©Ù.P(Y=1jx0)=F(x0)´x0:?Y=1VÇ.·±½ÂY²©a.:l(x)=fx:F(x)=g(1)·FUÏLÔöêâ5Ol.ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2{üP,-p=2,½Âz=wx1+(1 w)x2,Ù¥w´[0;1]m .d§kF(xj)=e(z )=1+e(z u)=;(2)Ù¥=(;;w)T.K·±íÑY²©a.:l(x1;x2)=f(x1;x2):wx1+(1 w)x2 =log(1 )g:(3)ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2bÔöêâP(x1;Y1);:::;(xn;Yn),Ù¥xi=(xi1;xi2).·Ñzëêk©ÙµN(0;2);Exp(0);wBeta(0;0):(4)·B±íÑ ©ÙµChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2f(jY)/nYi=1e(wxi1+(1 w)xi2 )=1+e(wxi1+(1 w)xi2 )=!Yi11+e(wxi1+(1 w)xi2 )=1 Yie( 0)2 220e 0w0 1(1 w)0 1:(5)d§B±ÏL4q,{5O^=argmaxlogf(jY)(6)ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2ALSD3Sng ,·®²OÑ5©a.Xe:l;n=f^wnx1+(1 ^wn)x2=^+^log(1 )g;(7)Tkn=f(x1;Y1);:::;(xn;Yn)g.e5§·F3TunÀJe:\Ôö8.·lTunÀÑk0êâÿÀ§ùÿÀêâÀ±Cl;nIO.ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2·òùÿÀêâP~x1;:::;~xk0., UìXe{l¥ÀJêâ:xn+1=argmaxx2f~x1;:::;~xk0gdet(I(^n;x))(8)Ù¥I(^;x)´3:x?XêFisher&E.ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2[~fêâ)g©ÙF(x)=exp(z )1+exp(z )\þÑlN(0;0:1)ÅØ.)100Åê.·½K=0:7,K÷vF(x)xIPaO1§ÄKIPaO2.ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2I:numDerivThecompletecodewillnotsharehere.Ifyouareinterested,youcancontactmelater.ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2[(JChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2[(JChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2[(JChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2Deng,LinandQian(2012)TheLasso(Tibshirani,1996)ÏÙ 5§´«~61CþÀJ{.ÄXe.Y=XT+(9)Ù¥X=(X1;:::;Xp)T´pÅþ,Y´A,´£8Xê,Ñlþ§2©ÙÅØ.½npOXÚAy,Lasso.KF)±¤µ^=argmin(y X)T(y X)+jjjjl1(10)ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2CþÀJ°(ݱ^ÀÇ5ïþ,P.-A()=fj:j6=0;j=1;:::;pg,Kp=]fj:j2A()butj2A(^)g+]fj:j2A(^)butj2A()g(11)ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2cXÑ´{üÅÄ.© ıU?O°Ý´¯¤±.McKayetal.(1979).¶áNÄ(LHS),TüѱÀ3¤kCþþÓ?1© Ä.ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2Owen(1992)showedthatwhenusingtheLHSforMonte-Carlointegration,theestimatorislessvariatethantheestimatorfromIIDsampling.SoweexpectthatusingtheLHSforLassocanimprovethesolution.Also,whenrunningavariableselectionprocedure,itisbetterthevariablesarelesscorrelatedsothattheactivevariablesarelesscorrelatedtotheinactivevariables.OrthogonalLatinhypercubedesign(OLHD)ornearlyorthogonallatinhypercubedesign(NOLHD)wouldbeagoodchoice.WearealsomotivatedbyFang,GeandLiu(2002),theirresultoftheconnectionbetweendiscrepancyandE(fNOD)insupersaturateddesignsmaybehelpfulhere.Supersaturateddesignsareusuallyusedforscreeningdesigns.ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2¤I:lars,lhsGendexsoftwareisalsoneededAlsorefertoÅìÆSÁOÐ&{0üÄuR[~f~1~2[ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2[ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2[(JChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2Table:ThesummaryofforCase21st.QuantMedianMean3rd.QuantmaxjijjIID0.21350.34380.46380.76560.4595441RLHD0.14580.15620.31040.50520.4853301NOLHD0.08330.10420.17780.20310.01195678NOMLHD0.13540.20830.20830.46880.3153421ChinaRConferenceÅìÆSÁOÐ&{0üÄuR[~f~1~2THANKYOUANYQUESTION???ChinaRConferenceÅìÆSÁOÐ&
本文标题:R语言案例_机器学习的试验设计初探
链接地址:https://www.777doc.com/doc-6151084 .html