您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考数学应用题归类解析@
1中考数学应用题归类解析应用题源于生产、生活实践,是中考数学的常见题型.解题时,要求学生要熟悉其基本的生产、生活情景,善于积极地用数学观点和方法去解决实际问题.为了帮助九年级同学系统地复习这一题型,本文以历年中考题为例,归纳其类型与解法,供参考.一、方程型例1、(长沙市)“5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?二、不等式型例2、(青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A、B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?三、一次函数型例3、(乌鲁木齐市)某公司在A、B两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)请填写下表,并写出y与x之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?2四、二次函数型例4.(河北省)研究所对某种新型产品的产销情况进行了研究,为了投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式90x5x101y2,投入市场后当年能全部售出,且在甲、乙两地每吨的售价甲P、乙P(万元)均与x满足一次函数关系。(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x吨时,14x201P甲,请你用含x的代数式表示甲地当年的年销售额,并求年利润甲W(万元)与x之间的函数关系式;(2)成果表明,在乙地生产并销售x吨时,nx101P乙(n为常数),且在乙地当年的最大年利润为35万元。试确定n的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?五、统计型例5、(呼和浩特市)学校要从甲、乙、丙三名长跑运动员中选出一名奥运火炬传递手.先对三人一学期的1000米测试成绩做了统计分析如表1;又对三人进行了奥运知识和综合素质测试,测试成绩(百分制)如表2;之后在100人中对三人进行了民主推选,要求每人只推选1人,不准弃权,最后统计三人的得票率如图1,一票得2分.(1)请计算甲、乙、丙三人各自关于奥运知识,综合素质,民主推选三项考查得分的平均成绩,并参考1000米测试成绩的稳定性确定谁最合适.(2)如果对奥运知识,综合素质、民主推选分别赋予3,4,3的权,请计算每人三项考查的平均成绩,并参考1000米测试的平均成绩确定谁最合适.表1侯选人1000米测试成绩(秒)平均数甲185188189190188乙190186187189188丙187188187190188表2测试项目测试成绩3奥运知识甲乙丙综合素质856070758060六、几何型例6、(哈尔滨市)如图2,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.求此时轮船所在的B处与灯塔P的距离(结果保留根号).七、方程与不等式结合型例7、(哈尔滨市)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.4八、不等式与函数结合型例8、(武汉市)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?九、不等式与统计结合型例9、(呼和浩特市)冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克;乙种饮料每瓶需糖6克,柠檬酸10克。现有糖500克,柠檬酸400克.(1)请计算有几种配制方案能满足冷饮店的要求?(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表。请你根据这些统计数据确定一种比较合理的配制方案,并说明理由.两种饮料的日销量甲10121416212530384050乙4038363429252512100天数3444811122十、方程、不等式、函数结合型例10、(河南省)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的32,又不少于B种笔记本数量的31,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时花费是多少元?5专题复习函数应用题类型之一与函数有关的最优化问题函数是一描述现实世界变量之间关系的重要数学模型,在人们的生产、生活中有着广泛的应用,利用函数的解析式、图象、性质求最大利润、最大面积的例子就是它在最优化问题中的应用.1.(莆田市)枇杷是莆田名果之一,某果园有100棵枇杷树。每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?2.(贵阳市)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?类型之二图表信息题本类问题是指通过图形、图象、表格及一定的文字说明来提供实际情境的一类应用题,解题时要通过观察、比较、分析,从中提取相关信息,建立数学模型,最终达到解决问题的目的。3.(08江苏南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x,两车之间的距离.......为(km)y,图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?ABCDOy/km90012x/h46类型之三方案设计方案设计问题,是根据实际情境建立函数关系式,利用函数的有关知识选择最佳方案,判断方案是否合理,提出方案实施的见解等。4.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a0),且所建的两种住房可全部售出.该公司又将如何建房获得利润最大?(注:利润=售价-成本)类型之四分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。5.(赣州市)年春节前夕,南方地区遭遇罕见的低温雨雪冰冻天气,赣南脐橙受灾滞销.为了减少果农的损失,政府部门出台了相关补贴政策:采取每千克补贴0.2元的办法补偿果农.下图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y(万元)与销售量x(吨)的关系图.请结合图象回答以下问题:(1)在出台该项优惠政策前,脐橙的售价为每千克多少元?(2)出台该项优惠政策后,“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求果园共销售了多少吨脐橙?(3)①求出台该项优惠政策后y与x的函数关系式;②去年“绿荫”果园销售30吨,总收入为10.25万元;若按今年的销售方式,则至少要销售多少吨脐橙?总收入能达到去年水平.6.(成都)某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格1Q(元/件)与销售时间x(天)之间有如下关系:11Q302x(1≤x≤20,且x为整数),后10天的销售价格2Q(元/件)与销售时间x(天)之间有如下关系:2Q=45(21≤x≤30,且x为整数).(1)试写出该商店前20天的日销售利润1R(元)和后l0天的日销售利润2R(元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.AB成本(万元/套)2528售价(万元/套)303477.通过实验研究,专家们发现:一个会场听众听讲的注意力指标数是随着演讲者演讲时间的变化而变化的,演讲开始时,听众的兴趣激增,中间有一段时间,听众的兴趣保持平稳的状态,随后开始分散。听众注意力指标数y随时间x(分钟)变化的函数图像如下图所示(y越大表示听众注意力越集中)。当0≤x≤10时,图像是抛物线的一部分,当10≤x≤20和20≤x≤40时,图像是线段。(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;(2)王标同学竞选学生会干部需要演讲24分钟,问他能否经过适当安排,使听众在听他的演讲时,注意力的指标数都不低于36?若能,请写出他安排的时间段;若不能,也请说明理由
本文标题:中考数学应用题归类解析@
链接地址:https://www.777doc.com/doc-6170528 .html