您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 八年级数学下一次函数知识点总结
一次函数知识点总结基本概念:1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0)。2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。3.当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。图像性质1.作法与图形:(1)列表.(2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。3.函数不是数,它是指某一变化过程中两个变量之间的关系。一次函数的图象特征和性质:y=kx+bb0b0b=0y=kxk0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小4、特殊位置关系:①当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等②当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)了解如何设一次函数解析式:点斜式y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点)截距式(y=-b/ax+ba、b分别为直线在x、y轴上的截距,已知(0,b),(a,0))实用型(由实际问题来做)扩展1.求函数图像的k值:(y1-y2)/(x1-x2)2.求任意线段的长:√(x1-x2)2+(y1-y2)23.求两个一次函数式图像交点坐标:解两函数式,就是解方程组4.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]5.若两条直线y1=k1x+b1平行y2=k2x+b2,那么k1=k2,b1≠b26.向右平移n个单位y=k(x-n)+b向左平移n个单位y=k(x+n)+b向上平移n个单位y=kx+b+n向下平移n个单位y=kx+b-n总结与前几章的关系1、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b0或ax+b0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.3、一次函数与二元一次方程组(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=bcxba的图象相同.(2)二元一次方程组的解可以看作是两个一次函数的图象交点.
本文标题:八年级数学下一次函数知识点总结
链接地址:https://www.777doc.com/doc-6171402 .html