您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 必修5:数列前n项求和专题选讲
数列前N项求和专题选讲1.若数列{an}为等比数列,S5=10,S10=50,则S15=.2102.若an=1+2+…+n,则数列{}的前n项和Sn=.1na21nn因为an=1+2+…+n=,所以==2(-),故Sn=2[(1-)+(-)+…+(-)]=.(1)2nn1na21n1n11n1212131n11n21nn3.数列1,3,5,7,…的前n项和Sn=.121418116n2+1-12nS=(1+3+5+…+2n-1)+(++…+)=n2+1-.121412n12n4.已知数列{an}的前n项和Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),则S2013+S2014+S2015=()CA.-2013B.-2014C.2014D.20155.设f(x)=,则f(x)+f(1-x)=,并求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为.122x2232f(x)+f(1-x)=+=+=+==.又设S=f(-5)+f(-4)+…+f(6),则S=f(6)+f(5)+…+f(-5),所以2S=[f(6)+f(-5)]+[f(5)+f(-4)]+…+[f(-5)+f(6)].所以2S=12×=6,所以S=3.122x1122x122x2222xx122x12222xx12222222(1)等差数列{an}的前n项和Sn==.(2)等比数列{an}的前n项和Sn==(q≠1).(3)12+22+32+…+n2=.(4)13+23+33+…+n3=.1()2nnaana1+d(1)2nn1(1)1naqq11naaqqn(n+1)(2n+1)16n2(n+1)214常见的拆项方法有:(1)=;(2)=;(3)=;(4)=;1(1)nn111nn1()nnk111()knnk1(1)(2)nnn111[]2(1)(1)(2)nnnn1ab1()abab例1.求数列的和.(分组转化法)1,3+13,32+132,……,3n+13n=(1+3+……+3n)+(13132+……+13n)1311322nn11(33)2nnSn=1+(3+13)+(32+132)+……+(3n+13n)解:S结构特征:通项由几个特殊数列相加减构成。题型一分组转化求和试刀求和:Sn=1+(3+4)+(5+6+7)+…+(2n-1+2n+…+3n-2);因为an=(2n-1)+2n+(2n+1)+…+(3n-2)==n2-n,所以Sn=(12+22+32+…+n2)-(1+2+…+n)=n(n+1)(5n-2)(n∈N*).(2132)2nnn1652523232例2.求下列数列前n项的和Sn:,,,,,11431321211nn111)1(1nnnn解:)111()1121()4131()3121()211(nnnnSn1111nnn11()1nn(裂项相消法)题型二裂项相消法求和结构特征:通项由可裂项拆分的分式式构成。已知等比数列{an}的首项a1=,公比q满足q0且q≠1.又已知a1,5a3,9a5成等差数列.(1)求数列{an}的通项;(2)令bn=log3,试求数列{}的前n项和Sn;(3)试比较+++…+与的大小.131na11nnbb131bb241bb351bb21nnbb34试刀(1)依题意,10a3=a1+9a5,即q2=+q4×9,整理得9q4-10q2+1=0,解得q2=或q2=1,又q0,且q≠1,所以q=,此时,an=a1·qn-1=()n.1031313191313(2)因为bn=log3=-log3an=n,==-,所以Sn=b1+b2+…+bn=(-)+(-)+…+(-)=1-=.1na11nnbb1(1)nn1n11n111213121n11n11n1nn(3)因为==(-),所以原式=[(-)+(-)+(-)+(-)+…+(-)+(-)]=(1+--)=-(+)对n∈N*恒成立.21nnbb341(2)nn121n12n12111213141315141611n11n1n12n121211n12n1211n12n34例2.求数列}21{nn前n项和.解:nnnS21813412211①12121)1(161381241121nnnnnS②两式相减:1111(1)11111122()1224822212nnnnnnSnnnnnnnnS2212)2211(211错位相减法题型三错位相减法求和结构特征:由一个等差和一个等比对应项相乘构成。1a22a33a(1)当a=1时,Sn=1+2+3+…+n=.(2)当a≠1,且a≠0时,Sn=+++…+,①Sn=++…++,②(1)2nn1a22a33anna1a21a32a1nna1nna试刀求和+++…+(a≠0).nna由①-②,得(1-)Sn=++…+-=-.两边同除以(1-)并整理得Sn=.(a=1)(a≠1).1a1na21a1nna1a1nna11[1()]11naaa1a2(1)(1)(1)nnaanaaa综上所述,Sn=(1)2nn2(1)(1)(1)nnaanaaa练习:1.数列的前n项之和为Sn,则Sn的值得等于()(A)(B)(C)(D),,,,,,nn2112161781541321112211-nnnn2112nnn21122nnn2112A2.求数列1,,,,……的前n项和解:练习:2aa432aaa6543aaaa2)1(321,1nnnSanaaaaaaaaaabannnnnnnnn11)1(,112112211nnbbbbS321)]()()1[(111213nnnaaaaaaS)]()1[(111231nnaaaaaa]1)1(11[1122aaaaaann3.求下列数列的前n项和Sn:,,,,,21531421311nn)211(21)2(1nnnn解:)]211()1111()5131()4121()311[(21nnnnSn)2111211(21nn练习:4.数列中,满足(1)求的通项公式;(2)设,求的前n项的和Sn。练习:{}na21123333,3nnnaaaanN{}na{}nbnnnba211231333,3nnnaaaanN解:()①21123113333,3nnnnnaaaaanN②1113,333nnnnanN②①得:11133nnaa1233nnnnnnnbabna()且231323333nnSn③23131323(1)33nnnSnn④231233333nnnSn③-④得:113(13)[3]213nnnSn1321344nn课后再做好复习巩固.谢谢!再见!奎屯王新敞新疆·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋
本文标题:必修5:数列前n项求和专题选讲
链接地址:https://www.777doc.com/doc-6175109 .html