您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 第4章决策论__层次分析法(3)
第4章决策论——层次分析法(运筹学实用方法)层次分析法(AHP)是美国运筹学家匹茨堡大学教授萨蒂(T.L.Saaty)于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。是对难于完全定量的复杂系统作出决策的模型和方法。决策是指在面临多种方案时需要依据一定的标准选择某一种方案。日常生活中有许多决策问题。举例1.在海尔、新飞、容声和雪花四个牌号的电冰箱中选购一种。要考虑品牌的信誉、冰箱的功能、价格和耗电量。2.在泰山、杭州和承德三处选择一个旅游点。要考虑景点的景色、居住的环境、饮食的特色、交通便利和旅游的费用。3.在基础研究、应用研究和数学教育中选择一个领域申报科研课题。要考虑成果的贡献(实用价值、科学意义),可行性(难度、周期和经费)和人才培养。一、层次分析法概述人们在对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统。层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法。层次分析法(AHP法)是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。二、层次分析法的基本原理层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。1.建立层次结构模型该结构图包括目标层,准则层,方案层。层次分析法的基本步骤归纳如下3.计算单排序权向量并做一致性检验2.构造成对比较矩阵计算最下层对最上层总排序的权向量。4.计算总排序权向量1.建立层次结构模型将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。最高层:决策的目的、要解决的问题。最低层:决策时的备选方案。中间层:考虑的因素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。下面举例说明。例1大学毕业生就业选择问题获得大学毕业学位的毕业生,在“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己才干作出较好贡献(即工作岗位适合发挥自己的专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉等);⑤工作环境好(人际关系和谐等)⑥发展晋升机会多(如新单位或前景好)等。工作选择可供选择的单位P1’P2,Pn贡献收入发展声誉工作环境生活环境目标层准则层方案层目标层O(选择旅游地)P2黄山P1桂林P3北戴河准则层方案层C3居住C1景色C2费用C4饮食C5旅途例2.选择旅游地如何在3个目的地中按照景色、费用、居住条件等因素选择.【练习】建立层次结构模型一位顾客决定要购买一套新住宅,经过初步调查研究确定了三套候选的房子A、B、C,问题是如何在这三套房子里选择一套较为满意的房子呢?顾客从房地产公司得到了有关这三套房子的资料:1、住房的地理位置2、住房的交通情况3、住房附近的商业、卫生、教育情况4、住房小区的绿化、清洁、安静等自然环境5、建筑结构6、建筑材料7、房子布局8、房子设备9、房子面积10、房子每平方米建筑面积的单价将上述10个标准可归纳为4个标准:房子的地理位置与交通(包括1、2项)房子的居住环境(包括3、4项)房子结构、布局与设施(包括5、6、7、8、9项)房子每平方米建筑面积的单价(包括10项)2.构造判断(成对比较)矩阵在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出:一致矩阵法,即:1.不把所有因素放在一起比较,而是两两相互比较2.对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,以提高准确度。心理学家认为成对比较的因素不宜超过9个,即每层不要超过9个因素。判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较。判断矩阵的元素aij用Santy的1—9标度方法给出。判断矩阵元素aij的标度方法标度含义1表示两个因素相比,具有同样重要性3表示两个因素相比,一个因素比另一个因素稍微重要5表示两个因素相比,一个因素比另一个因素明显重要7表示两个因素相比,一个因素比另一个因素强烈重要9表示两个因素相比,一个因素比另一个因素极端重要2,4,6,8上述两相邻判断的中值倒数因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij1135/13/11125/13/13/12/117/14/1557123342/11AijjiijnnijaaaaA1,0,)(设要比较各准则C1,C2,…,Cn对目标O的重要性ijjiaCC:A~成对比较阵A是正互反阵要由A确定C1,…,Cn对O的权向量选择旅游地目标层O(选择旅游地)准则层C3居住C1景色C2费用C4饮食C5旅途C1C2C3C4C5C1C2C3C4C5Z1A2A3A4A5A1B2B3B54321,,,,AAAAA321,,BBB旅游问题(1)建模分别分别表示景色、费用、居住、饮食、旅途。分别表示苏杭、北戴河、桂林。(2)构造成对比较矩阵1135131112513131211714155712334211A1215121215211B1383113813112B131313113113B114111314314B144411141115B【练习】构造成对比较矩阵满意的房子目标层地理位置及交通居住环境结构、布局、设施每平方米单价准则层决策层购买房子A购买房子B购买房子C(3)计算各因素权重——规范列平均法第一步先求出两两比较矩阵每一列的总和;第二步把两两比较矩阵的每一元素除以其相应列的总和,形成标准两两比较矩阵第三步计算标准两两比较矩阵的每一行的平均值1215121215211B17/107/2881711724172175857417101B0.5950.280.129称为旅游地方选择中景点的特征向量【练习】按下列构造成对比较矩阵求各因素权重1618161218211B用单一指标来评估三个方案对比较矩阵如下:1242113413112B17141713143114B1363114614113B(4)一致性检验第一步由被检验的两两比较矩阵乘以其特征向量所得的向量称为赋权和向量;第二步每个赋权和向量的分量分别除以对应的特征向量的分量;第三步计算其平均值第四步计算一致性指标第五步计算一致性比率129.028.0595.0121512121521388.0836.08.101.3129.0388.099.228.0836.0025.3595.08.1max1maxnnCI1.0RICICR008.3301.399.2025.3004.0133008.31maxnnCI007.058.0004.0RICICR由于λ连续的依赖于aij,则λ比n大的越多,A的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ-n数值的大小来衡量A的不一致程度。1nnCI定义一致性指标:CI=0,有完全的一致性CI接近于0,有满意的一致性CI越大,不一致越严重RI000.580.901.121.241.321.411.451.491.51n1234567891110为衡量CI的大小,引入随机一致性指标RI。方法为Saaty的结果如下随机一致性指标RI50021,,,AAA50021,,,CICICI15005005002150021nnCICICIRI则可得一致性指标随机构造500个成对比较矩阵1.0RICICRA一致性检验:利用一致性指标和一致性比率0.1及随机一致性指标的数值表,对进行检验的过程。一般,当一致性比率的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aij加以调整。时,认为A定义一致性比率:RICICR“选择旅游地”中准则层对目标的权向量及一致性检验1135/13/11125/13/13/12/117/14/1557123342/11A准则层对目标的成对比较阵最大特征根=5.073权向量(特征向量)w=(0.263,0.475,0.055,0.090,0.110)T018.0155073.5CI一致性指标随机一致性指标RI=1.12(查表)一致性比率CR=0.018/1.12=0.0160.1通过一致性检验记第2层(准则)对第1层(目标)的权向量为(2)(0.263,0.475,0.055,0.090,0.110)Tw同样求第3层(方案)对第2层每一元素(准则)的权向量12/15/1212/15211B方案层对C1(景色)的成对比较阵1383/1138/13/112B方案层对C2(费用)的成对比较阵…Cn…Bn最大特征根1=3.0052=3.002…5=3.0权向量w1(3)w2(3)…w5(3)=(0.595,0.277,0.129)=(0.082,0.236,0.682)=(0.166,0.166,0.668)选择旅游地【练习】按下列构造成对比较矩阵进行一致性检验1618161218211B用单一指标来评估三个方案成对比较矩阵如下:1242113413112B17141713143114B1363114614113B(5)求各方案的优劣次序计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。这一过程是从最高层次到最低层次依次进行的。即B层第i个因素对总目标的权值为:mjijjba1B层的层次总排序为:nmmnnnmmmmbababaBbababaBbababaB22112222211211221111:::即B层第i个因素对总目标的权值为:nmmnnnmmmmbababaBbababaBbababaB22112222211211221111:::mjijjba1B层的层次总排序为:B层的层次总排序mAAA,,,21maaa,,,21nBBB21111212122212mmnnnmbbbbbbbbbAB111bbamjjj212bbamjjjnmjnjjbba1记第2层(准
本文标题:第4章决策论__层次分析法(3)
链接地址:https://www.777doc.com/doc-618704 .html