您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 新人教版小学五年级下册单元备课主讲稿 全册
新人教版小学五年级下册单元备课主讲稿全册一、教学内容:图形的变换二、教学目标:1.使学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。2.进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90度。3.使学生初步学会运用对称、平移和旋转的方法在方格纸上设计图案,进一步增强空间观念。4.让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。三、教学重难点:1.轴对称图形的特征和性质。2.旋转现象的特征和性质。3.用对称、旋转和平移设计美丽图案。四、单元教材分析:学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,也能在方格纸上画出一个简单图形沿水平或垂直方向平移后的图形。在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形和画出一个简单图形旋转90°后的图形,发展空间观念。结合本单元的学习,还安排了数学游戏“设计镶嵌图案”五、教学设计:例1:轴对称的性质(1)复习轴对称图形有关知识。(2)分别观察松树和小草,再整体认识轴对称。体会轴对称图形不仅仅是把一个图形平均分成两半。(3)通过数一数对应点到对称轴的距离,概括轴对称的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。从而使学生对轴对称的认识从经验上升到理论。例2:画一个图形的轴对称图形(1)在已经掌握画简单图形的轴对称图形和轴对称图形的性质的基础上画一个图形的轴对称图形。(2)提示学生思考画的步骤和方法:先画几个关键的对称点,再连线。做一做教材让学生判断把一张纸连续对折三次,画上一个图形,剪出的是什么图案。在这个活动中,要让学生进行空间想像,进一步体会轴对称变换的特点。如果学生想像对折四次后剪出的图案有困难,教师可以让学生按书上的方法实际折一折、剪一剪,帮助学生进行想象。例3:旋转的性质(1)复习旋转有关知识。(2)线段的旋转:从指针的变换方向、长度和角度,三个方面把握线段旋转变换的特征。(3)图形的旋转:从点、线段、图形的角度观察风车:对应点与原点O连线组成的角有没有变化,对应点与原点连线的长度有没有变化。从而使学生对旋转变换的认识从经验上升到理论。例4:把一个图形旋转90度(1)从三角形的旋转方向、边的长度和角度三个方面,思考如何把三角形顺时针旋转90度。(2)把图形的旋转分解为顶点与点O连线的旋转,先把OA旋转90度;再把OB旋转90度,连结AB便可。做一做(1)根据旋转变换的性质判断,进一步体会旋转的特征。(2)利用旋转设计图案。(3)体会利用旋转变换进行设计图案带来的美感。欣赏设计(1)结合主题图中的图案,让学生体会图形变换在生活中的应用,利用图形变换进行设计图案带来的美感,数学的价值。(2)利用图形变换设计图案。六.时间安排:4课时五年级下册第二单元备课主讲稿一、教学内容:因数与倍数二、教学目标1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。2.使学生通过自主探索,掌握2、5、3的倍数的特征。3.逐步培养学生的数学抽象能力。三.教学重难点1.求一个数因数和倍数的方法。2.2、5、3的倍数的特征。3.质数与合数的特征。四、单元教材分析通过四年多的数学学习,学生已经掌握了大量的整数知识(包括整数的认识、整数四则运算),本单元让学生在前面所学的整数知识基础上,进一步探索整数的性质。本单元涉及到的因数、倍数、质数、合数以及第四单元中的最大公因数、最小公倍数都属于初等数论的基本内容。数论是一个历史悠久的数学分支,它是研究整数的性质的一门学问,以严格、简洁、抽象著称。数学一直被认为是“科学的皇后”,而数论则更被誉为“数学的皇后”,可见数论在数学中的地位。本单元的知识作为数论知识的初步,一直是小学数学教材中的重要内容。通过这部分内容的学习,可以使学生获得一些有关整数的知识,另一方面,有助于发展他们的抽象思维五、教学设计1.因数和倍数例1:一个数的因数的求法(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。例2:一个数的倍数的求法(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。做一做:与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征做准备。2.2、5、3的倍数的特征因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。2的倍数的特征(1)从生活情境“双号”引入。(2)观察2的倍数的个位数,总结出2的倍数的特征。(3)介绍奇数和偶数的概念。(4)可让学生随意找一些数进行验证,但不要求严格的证明。5的倍数的特征(1)编排方式与2的倍数的特征类似。(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。3的倍数的特征(1)强调自主探索,让学生经历观察――猜想――推翻猜想――再观察――再猜想――验证的过程。(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。3.质数和合数:例1:找100以内的质数(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。六.课时安排:5课时五年级下册第三单元备课主讲稿一、教学内容:五年级下册第三单元二、教学目标1.通过观察和操作,认识长方体和正方体的特征以及它们的展开图。2.通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1m3、1dm3、1cm3以及1L、1ml的实际意义。3.结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。4.探索某些实物体积的测量方法。三、教学重难点1.长方体和正方体表面积的意义和计算方法。2.计算长方体和正方体的体积。3.体积单位之间的进率。4.体积和容积的联系和区别。四、单元教材分析学生在第一学段已经初步认识了一些简单的立体图形,已经能够识别出长方体、正方体、圆柱和球,本单元在此基础上系统教学长方体和正方体的有关知识。长方体和正方体是最基本的立体图形。通过学习长方体和正方体,可以使学生对自己周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。另外,长方体和正方体体积的计算,也是学生形成体积的概念、掌握体积的计量单位和计算各种几何形体体积的基础。五、单元教学设计例1:研究长方体的特征展示了小组同学对长方体的物品观察操作、填表交流、讨论总结,逐步概括出长方体特征的学习过程。这里只是说明长方体的特征,不是下定义。例2:研究长方体棱的特点展示了学生小组合作制作一个长方体框架,探索长方体的12条棱之间的关系,引出长方体的长、宽、高的概念。练习五第4题,是一个长方体框架直观图,让学生通过观察,发现长方体棱之间的关系。如,各组棱相互平行;与其中一条棱垂直的几条棱相互平行等,以加深对长方体的认识。第9*题,答案是:A→C,D→I,E→F。表面积的计算:例1:教学长方体和正方体表面积的计算方法为了培养学生能够根据具体条件和要求,确定不同的面的面积怎样算,教材中没有总结长方体表面积的计算公式,体现解决问题策略的多样性和开放性。例2:教学正方体表面积的计算方法启发学生自己根据正方体的特征,想出计算方法。体积单位间的进率教材通过图示,引导学生用不同的方法推出体积单位之间的进率。接着,教材把长度单位、面积单位和体积单位及其相邻单位间的进率列成表格,让学生填写并对比,以加深印象。再通过例3教学体积单位名数的变换,为以后计算实际问题时灵活处理体积单位做准备。例4是在解答实际问题的过程中进行体积单位名数的变换。容积和容积单位例5:长方体和正方体容器容积的计算方法特别强调要从容器里面量长、宽、高,并复习了体积单位与容积单位之间的关系。例6:用排水法来测量不规则物体体积的方法利用有刻度的量杯记录下放入物体前后水位的刻度,水面上升的那部分水的体积就是该物体的体积。六.课时安排:11课时五年级下册第四单元备课主讲稿一、教学内容:五年级下册第四单元二、教学目标1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。3.理解和掌握分数的基本性质,会比较分数的大小。4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。5.会进行分数与小数的。三.教学重难点理解分数的意义和掌握分数的基本性质。四、单元教材分析本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,最大公因数与约分,最小公倍数与通分以及分数与小数的互化。学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。四、教学设计例1:把除法的意义和分数的意义进行统一:把1个物体平均分成3份,用除法的意义列出除法算式1÷3,根据分数的意义得到每份是。例2(1)把许多物体(3块月饼)平均分成4份,求每份是多少。用除法的意义列出除法算式3÷4,根据分数的意义得到每份是,在这儿,可以用两种方式来理解:A、把1平均分成4份,每份是,这样的3份是。B、把3平均分成4份,每份是。(2)通过图示得到分数结果,方法多样:一、用操作或图示法。二、推理:1块月饼平均分给4人,每人分得块,3块月饼平均分给4人,每人分得3个块,是块。2.真分数与假分数例1:让学生根据已有知识写出分数,并重点观察分数中分子和分母的大小,并借助直观把它们和1比较,再介绍真分数的概念。例2:让学生重点观察分数中分子和分母的大小,并把它们和1的大小比较,给出假分数的概念。需指出这里的单位“1”是一个圆而不是所有圆的总体。例3:(1)从生活语言“一个半”引出带分数的写法及读法。(2)让学生仿照着写出其他的分数。例4:(1)要把假分数化成整数或带分数是因为要培养学生对于分数的数感。(2)化的时候有不同的方式。A.根据分数的意义:4个就是1。B.利用直观图。C.利用分数与除法的关系。(3)可引导学生总结假分数化成整数或带分数的一般方法。3.分数的基本性质例1:分数基本性质的推导(1)通过直观图观察得出三个分数相等。(2)从两个方向观察三组分数的分子、分母的变化规律。(3)通过自主举例,从具体到一般,总结出分数的基本性质。(4)由于分数与除法的内在一致性,引导学生用除法中商不变的性质来说明分数的基本性质。例2:分数基本性质的应用把分数化成分母不同(分母扩大、分母缩小两种情况),但大小相同的另一分数。4.约分:与九义教材相比,把公因数、最大公因数移至此,更体现了求公因数的必要性。最大公因数例1:公因数、最大公因数的概念(1)利用实际情境(用正方形铺满长方形且必须是整块数)引出求公因数的必要性。(2)借助操作进一步理解正方形的边长必须既是长方形长的因数,又是宽的因数,从实际问题转入数学问题。(3)用集合的形式表示出因数、公因数,与第二单元相响应。例2:最大公因数的求法(1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最大公因数的方法,只在“你知道吗”中进行介绍。(2)多种方法。A.分别列出两个数的所有因数,再找公
本文标题:新人教版小学五年级下册单元备课主讲稿 全册
链接地址:https://www.777doc.com/doc-618858 .html