您好,欢迎访问三七文档
2-15在电压负反馈单闭环有静差调速系统中,下列参数发生变化时系统是否有调节作用?为什么?(1)放大器的放大系数Kp。有。假设Kp减小,则控制电压减小,则电力电子变换器输出减小,则电动机转速下降;而电动机转速下降,则反馈电压减小,则偏差电压增大,则控制电压增大,则转速上升。(2)供电电网电压Ud。有。电网电压是系统的给定,反馈控制系统完全服从给定。(3)电枢电阻Ra。有。Ra的变化会影响到转速,会被测速装置检测出来,再通过反馈控制的作用,减小它对稳态转速的影响。(4)电动机励磁电流If。有。If的变化会影响到转速,会被测速装置检测出来,再通过反馈控制的作用,减小它对稳态转速的影响。(5)测速反馈系数α。当电压反馈系数α发生变化时,它不能得到反馈控制系统的抑制,反而会增大被调量的误差。反馈控制系统所能抑制的只是被反馈环包围的前向通道上的扰动。习题3.8(2)转速、电流双闭环直流调速系统电路原理图3-6在转速、电流双闭环调速系统中,若要改变电动机的转速,应调节什么参数?改变转速调节器的放大倍数Kn行不行?改变电力电子变换器的放大倍数Ks行不行?改变转速反馈系数α行不行?若要改变电动机的堵转电流,应调节系统中的哪些参数?答:①在转速、电流双闭环调速系统中,若要改变电动机的转速,应调节的参数有:转速给定电压U*n,因为转速反馈系统的转速输出服从给定。②改变转速调节器的放大倍数Kn,只是加快过渡过程,但转速调节器的放大倍数Kn的影响在转速负反馈环内的前向通道上,它引起的转速变化,系统有调节和抑制能力。因此,不能通过改变转速调节器的放大倍数Kn,来改变转速③改变改变电力电子变换器的放大倍数Ks,只是加快过渡过程,但转电力电子变换器的放大倍数Ks的影响在转速负反馈环内的前向通道上,它引起的转速变化,系统有调节和抑制能力。因此,不能通过改变电力电子变换器的放大倍数Ks,来改变转速④改变转速反馈系数α,能改变转速。转速反馈系数α的影响不在转速负反馈环内的前向通道上,它引起的转速变化,系统没有调节和抑制能力。因此,可以通过改变转速反馈系数α来改变转速,但在转速、电流双闭环调速系统中稳定运行最终的转速还是服从给定。⑤若要改变电动机的堵转电流,应调节系统中的参数有:转速的给定U*n、转速调节器的放大倍数Kn、转速调节器的限幅值、转速反馈系数α等,因为它们都在电流环之外。3-9试从下述五个方面来比较转速、电流双闭环调速系统和带电流截止环节的转速单闭环调速系统:①调速系统的静态性能;②动态限流性能;③启动的快速性④抗负载扰动的性能;⑤抗电源波动的性能答:①调速系统的静态性能:在转速、电流双闭环调速系统中,转速调节器采用PI调节器,整个系统成为一个无静差的系统。带电流截止环节的转速单闭环调速系统中,转速调节器采用PI调节器,整个系统成为一个无静差的系统。②动态限流性能:在转速、电流双闭环调速系统中,电流调节器采用PI调节器,将电流限制在Idm内。带电流截止环节的转速单闭环调速系统中,将电流限制在Idcr-Idbl内。③启动的快速性:在转速、电流双闭环调速系统在启动/制动过程中,转速调节器饱和,电流调节器在最大电流Idm附近进行PI调节,时间最短,提高了启动/制动的快速性。带电流截止环节的转速单闭环调速系统中,在启动/制动过程中,当电流大于截止电流Idcr时,电流调节器起作用,并不是在最大电流附近进行调节,启动/制动的快速性较差。④抗负载扰动的性能:在转速、电流双闭环调速系统中,负载扰动在转速外环中,负载扰动作用在电流环之后,因此只能靠转速调节器ASR来产生抗负载扰动的作用。在设计ASR时,应要求有较好的抗扰性能指标。带电流截止环节的转速单闭环调速系统中,负载扰动立即引起电流变化,当电流大于截止电流Idcr时,电流调节器起作用,可以进行调节。⑤抗电源波动的性能在转速、电流双闭环调速系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗电源波动的性能大有改善。在电流截止环节的转速单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电源电压扰动的性能要差一些。4-1分析直流脉宽调速系统的不可逆和可逆电路的区别。直流PWM调速系统的不可逆电路电流、转速不能够反向,直流PWM调速系统的可逆电路电流、转速能反向。4-2晶闸管电路的逆变状态在可逆系统中的主要用途是什么?晶闸管电路处于逆变状态时,电动机处于反转制动状态,成为受重物拖动的发电机,将重物的位能转化成电能,通过晶闸管装置回馈给电网。4-3V-M系统需要快速回馈制动时,为什么必须采用可逆线路。由于晶闸管的单向导电性,对于需要电流反向的直流电动机可逆系统,必须使用两组晶闸管整流装置反并联线路来实现可逆调速。快速回馈制动时,电流反向,所以需要采用可逆线路。4-5晶闸管可逆系统中的环流产生的原因是什么?有哪些抑制的方法?原因:两组晶闸管整流装置同时工作时,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流。抑制的方法:1.消除直流平均环流可采用α=β配合控制,采用α≥β能更可靠地消除直流平均环流。2.抑制瞬时脉动环流可在环流回路中串入电抗器(叫做环流电抗器,或称均衡电抗器)。4-6试从电动机与电网的能量交换,机电能量转换关系及电动机工作状态和电动机电枢电流是否改变方向等方面对本组逆变和反组回馈制动列表作一比较。①本组逆变:大部分能量通过本组回馈电网。电动机正向电流衰减阶段,VF组工作,VF组是工作在整流状态。电动机电枢电流不改变方向。②反组回馈制动:电动机在恒减速条件下回馈制动,把属于机械能的动能转换成电能,其中大部分通过VR逆变回馈电网。电动机恒值电流制动阶段,VR组工作。电动机电枢电流改变方向。4-7试分析配合控制的有环流可逆系统正向制动过程中各阶段的能量转换关系,以及正、反组晶闸管所处的状态。在制动时,当发出信号改变控制角后,同时降低了ud0f和ud0r的幅值,一旦电机反电动势E|ud0f|=|ud0r|,整流组电流将被截止,逆变组才真正投入逆变工作,使电机产生回馈制动,将电能通过逆变组回馈电网。当逆变组工作时,另一组也是在等待着整流,可称作处于“待整流状态”。即正组晶闸管处于整流状态,反组晶闸管处于逆变状态。4-8逻辑无环流系统从高速制动到低速时需经过几个象限?相应电动机与晶闸管状态如何?(P109)逻辑无环流系统从高速制动到低速时需经过一,二两个象限。相应电动机与晶闸管状态:正组逆变状态:电动机正转减速,VF组晶闸管工作在逆变状态,电枢电流正向开始衰减至零;它组整流状态:电动机减速,电枢电流过零并反向,反组VR由“待整流”进入整流。它组逆变状态:VR组晶闸管工作在逆变状态,电枢电流反向至最大并保持恒定。4-9从系统组成、功用、工作原理、特性等方面比较直流PWM可逆调速系统与晶闸管直流可逆调速系统的异同点。直流PWM可逆调速系统晶闸管可逆调速系统系统组成大电容滤波,六个二极管组成整流器,PWM变换器反向并联的两组晶闸管组成可控整流装置功用电流连续,电动机可在IV象限运行能够灵活的控制电动机的起动,制动及升降速。工作原理六个二极管构成的不可控整流器负责把电网提供的交流电整流成直流电,再经过PWM变换器调节直流电压,能够实现控制电动机的正反转。制动过程时,晶闸管整流装置通过逆变工作状态,把电动机的动能回馈给电网,在直流PWM系统中,它是把动能变为电能回馈到直流侧,但由于整流器的单向导通性,电能不可能通过整流装置送回交流电网,只能向滤波电容充电,产生泵升电压,及通过Rb消耗电能实现制动。当正组晶闸管VF供电,能量从电网通过VF输入电动机,此时工作在第I象限的正组整流电动运行状态;当电机需要回馈制动时,反组晶闸管装置VR工作在逆变状态,此时为第II象限运行;如果电动机原先在第III象限反转运行,那么它是利用反组晶闸管VR实现整流电动运行,利用反组晶闸管VF实现逆变回馈制动。特性能在IV象限运行,电流连续,电动机停止时有微震电流,消除静摩擦死区,低速平稳性好,低速时每个开关器件的驱动脉冲较宽,有利于器件的可靠导通。可在IV象限运行,电流不连续;实现了正组整流电动运行,,反组逆变回馈制动,反组整流电动运行,正组逆变回馈发电四种状态。4.1试分析提升机构在提升重物和重物下降时,晶闸管、电动机工作状态及α角的控制范围?提升重物:α90°,平均整流电压Ud0E(E为电动机反电动势),输出整流电流Id,电动机产生电磁转矩作电动运行,提升重物,这时电能从交流电网经晶闸管装置传送给电动机,V-M系统运行于第Ⅰ象限。重物下降:α90°,Ud0为负,晶闸管装置本身不能输出电流,电机不能产生转矩提升重物,只有靠重物本身的重量下降,迫使电机反转,产生反向的电动势-E。4.2在配合控制的有环流可逆系统中,为什么要控制最小逆变角和最小整流角?系统中如何实现?原因:为了防止出现“逆变颠覆”,必须形成最小逆变角βmin保护。实现:通常取αmin=βmin=30°4.3何谓待逆变、本组逆变和它组逆变,并说明这三种状态各出现在何种场合下。本组逆变阶段:电动机正向电流衰减阶段,VF组工作;它组整流阶段:电动机反向电流建立阶段,VR组工作;它组逆变阶段:电动机恒值电流制动阶段,VR组工作;4.4分析配合控制的有环流可逆系统反向起动和制动的过程,画出各参变量的动态波形,并说明在每个阶段中ASR和ACR各起什么作用,VF和VR各处于什么状态。ASR控制转速设置双向输出限幅电路以限制最大起制动电流,ACR控制电流设置双向输出限幅电路以限制最小控制角αmin与最小逆变角βmin。反向起动时VF处于整流状态,VR处于待逆变状态;制动时VF处于逆变状态,VR处于待整流状态。4.5逻辑控制无环流可逆系统消除环流的出发点是什么?可逆系统中一组晶闸管工作时(不论是整流工作还是逆变工作),用逻辑关系控制使另一组处于完全封锁状态,彻底断开环流的通路,确保两组晶闸管不同时工作。4.6为什么逻辑无环流系统的切换过程比配合控制的有环流可逆系统的切换过程长?这是由哪些因素造成的?原因:逻辑切换指令发出后并不能马上执行,还需经过两段延时时间,以确保系统的可靠工作。这就是封锁延时和开放延时。造成的因素:封锁延时和开放延时。4.7无环流逻辑控制器中为什么必须设置封锁延时和开放延时?延时过大或过小对系统有何影响?原因:由于主电流的实际波形是脉动的,如果脉动的主电流瞬时低于I0就立即发出零电流数字信号,实际上电流仍在连续地变化,突然封锁触发脉冲将产生逆变颠覆。在检测到零电流信号后等待一段时间,若仍不见主电流再超过I0,说明电流确已终止,再封锁本组脉冲。封锁延时tabl大约需要半个到一个脉波的时间。在封锁触发脉冲后,已导通的晶闸管要过一段时间后才能关断,再过一段时间才能恢复阻断能力。如果在此以前就开放它组脉冲,仍有可能造成两组晶闸管同时导通,产生环流。开放延时时间tdt,一般应大于一个波头的时间4.8弱磁与调压配合控制系统空载起动到额定转速以上,主电路电流和励磁电流的变化规律是什么?当提高Un,转速升到额定转速nN以上时,将根据感应电动势不变(E=EN)的原则,逐步减小励磁电流给定U*if,在励磁电流闭环控制作用下,励磁电流IfIfN,气隙磁通Φ小于额定磁通ΦN,电动机工作在弱磁状态,实现基速以上的调速。5-6分析电流滞环跟踪PWM控制中,环宽h对电流波动与开关频率的影响。当环宽比较大时,开关频率低,但电流波形失真较多,谐波分量高;当环宽小时,电流跟踪性能好,但开关频率增大了。5-10总结转速闭环转差频率控制系统的控制规律,若设置不当,会产生什么影响?一般说来,正反馈系统是不稳定的,而转速闭环转差频率控制系统具有正反馈的内环,系统却能稳定,为什么?转差频率控制的规律为:(1)在范围内,如果气隙磁通保持不变,转矩Te基本上与ωs成正比。(2)定子电流不同时,按照一定的US=f(w1,IS)函数关系控制定子的电压和频率,可以保持气隙磁通恒定。若US=f(w1,IS)设
本文标题:课后思考题(补充)
链接地址:https://www.777doc.com/doc-6195627 .html