您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 1.2-第3课时-矩形的性质、判定与其他知识的综合
第一章特殊平行四边形1.2矩形的性质与判定第3课时矩形的性质、判定与其他知识的综合1.回顾矩形的性质及判定方法.2.矩形的性质和判定方法与其他有关知识的综合运用.(难点)学习目标问题1:矩形有哪些性质?ABCDO①是轴对称图形;②四个角都是直角;③对角线相等且平分.①定义:一组邻边相等且有一个角是直角的平行四边形;②有一组邻边相等的矩形;③有一个角是直角的菱形.问题2:矩形的判定方法有哪些?新课引入矩形的性质与判定综合运用如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,求AE的长.例1新课讲解已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)连接DE,交AC于点F,请判断四边形ABDE的形状,并证明;(3)线段DF与AB有怎样的关系?请直接写出你的结论.例2新课讲解证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(1)求证:四边形ADCE为矩形;分析:在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形.新课讲解解:四边形ABDE是平行四边形,理由如下:由(1)知,四边形ADCE为矩形,则AE=CD,AC=DE.又∵AB=AC,BD=CD,∴AB=DE,AE=BD,∴四边形ABDE是平行四边形;(2)连接DE,交AC于点F,请判断四边形ABDE的形状,并证明;分析:利用(1)中矩形的对角线相等推知:AC=DE;结合已知条件可以推知AB∥DE,又AE=BD,则易判定四边形ABDE是平行四边形.新课讲解(3)线段DF与AB有怎样的关系?请直接写出你的结论.分析:由四边形ADCE为矩形,可得AF=CF,又由AD是BC边的中线,即可得DF是△ABC的中位线,则可得DF∥AB,DF=AB.12解:DF∥AB,DF=AB.理由如下:∵四边形ADCE为矩形,∴AF=CF,∵BD=CD,∴DF是△ABC的中位线,∴DF∥AB,DF=AB.1212点评:此题考查了矩形的判定与性质、三线合一以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.新课讲解例3如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.(1)BD与DC有什么数量关系?请说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.新课讲解DNMN如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3∶1,求的值.例3新课讲解(1)求证:CM=CN;解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,由折叠知∠CNM=∠ANM,∴∠CNM=∠CMN,∴CN=CM.新课讲解(2)若△CMN的面积与△CDN的面积比为3∶1,求的值.解:∵AD∥BC,S△CMN∶S△CDN=3∶1,∴CM∶DN=3∶1,设DN=x,则CM=3x,过点N作NK⊥BC于点K,∵DC⊥BC,∴NK∥DC,又∵AD∥BC,∴CK=DN=x,MK=2x,由(1)知CN=CM=3x,∴NK2=CN2-CK2=(3x)2-x2=8x2,DNMN22222823,MNMKNKxxx2323.MNxDNx新课讲解1.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是()A.S1S2B.S1=S2C.S1S2D.3S1=2S2B随堂即练2.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,AH⊥BC于点H,连接EH,若DF=10cm,则EH等于()A.8cmB.10cmC.16cmD.24cmB随堂即练3.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE=____度.75随堂即练4.如图,在矩形ABCD中,AB=2,BC=4,点A,B分别在y轴,x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标为.(1+23,2)随堂即练与全等三角形的结合矩形的性质与判定与平面直角坐标系的结合折叠问题课堂总结
本文标题:1.2-第3课时-矩形的性质、判定与其他知识的综合
链接地址:https://www.777doc.com/doc-6214453 .html