您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 药学 > 抗菌药物作用机制与细菌耐药性--陈代杰
抗菌药物作用机制与细菌耐药性陈代杰上海医药工业研究院上海来益生物药物研究中心研究抗菌药物作用机制和细菌耐药性的目的指导临床和非临床的合理用药开发新的更为有效的药物产生细菌耐药性的主要原因抗菌药物的滥用,导致对细菌产生巨大的选择压力(selectivepressure),使那些原来只占极小比例的耐药菌(10-6~10-9,自发突变频率),迅速繁殖。动物很可能是一个蓄积耐药细菌,并向人体传递耐药细菌的储蓄库。ß-内酰胺类抗生素作用机制及细菌耐药性β-内酰胺类抗生素的基本结构特征NSOCH3CH3COOHNHCRONOOCOOHCHCH2OHNSOCOOHSCH2RH3COHNOCOOHSRH3COHNSORCOOHHNCROXNOORCOOHHNCROXNORCOOHHNCRONOSO3HHNCROX青霉烷青霉烯氧青霉烷碳青霉烯头孢烯氧头孢烯碳头孢烯单环内酰胺细菌细胞壁结构所有的细菌都具有环绕着细胞膜的细胞壁。细胞壁的主要功能是:保持细胞形态,以及保护细胞免受由于环境渗透压变化造成的细胞溶解。传统地可以把细菌分为革兰阳性菌、革兰阴性菌和耐酸菌三种。一、β-内酰胺类抗生素作用机制细菌细胞壁结构在这三种细菌的细胞壁中都具有肽聚糖组分,其由N-乙酰胞壁酸(N-acetylmuramicacid,NAM))和N-葡萄糖胺(N-acetylglucosamine,NAG)。NAM和NAG紧密连接成线状,线与线之间通过连接在NAM和NAG上的内肽桥的连接成片状(图),片与片的堆积成为细胞壁的肽聚糖(图)。肽聚糖片的形成革兰阴性菌和革兰阳性菌的细胞表面结构肽聚糖的生物合成过程革兰阳性菌肽聚糖细胞壁的形成革兰阴性菌的细胞表面结构脂多糖的构成耐酸菌的表面结构耐酸菌(如铜绿假单胞菌合分支杆菌)的肽聚糖层比较薄,其外膜结构也与革兰阴性菌不同,由被称之为分支酸的蜡脂组成。这种分支酸与aribanogalactan糖脂可以调节合阻止某些药物或化学物质穿过细胞壁,使细胞具有较高的抗性。耐酸菌的表面结构三种不同细菌的细胞壁结构比较β-内酰胺类抗生素的作用机制第一阶段从Fleming观察到青霉素抑杀革兰氏阳性细菌要比革兰氏阴性细菌列为有效开始,至1945年观察到青霉素对细菌的形态学的效应为止,人们得出的结论是青霉素必定干扰了细菌细胞的表面结构。β-内酰胺类抗生素的作用机制第二阶段随着对细菌细胞壁的分离和粘肽组成的认识开始,人们观察到在青霉素的作用下,细菌细胞变成了球形,很类似受溶菌酶作用而产生的原生质体,由此认为青霉素必定影响了细胞壁的合成。Park及其同事则观察到受抑制的葡萄球菌累积了尿核苷,推测这是由于青霉素阻断了细菌细胞壁合成的某一步。β-内酰胺类抗生素的作用机制第三阶段开始于1957年,人们阐明了粘肽的结构及其生物合成,并确定青霉素是抑制了粘肽生物合成的最后一步(转肽反应)。β-内酰胺类抗生素的作用机制各种青霉素类、头孢菌素类和非典型的β-内酰胺类抗生素都能抑制粘肽合成的转肽反应而使两条聚糖链不能连接成交链结构。交链系统酶促反应AlaDAlaDRRRDDAADAla~CONHR'R'-NH2H2OH2ORDAla+R'-NH2DD-羧肽酶DD-转肽酶内肽酶青霉素(A)和D-丙氨酰-D-丙氨酸(B)的立体模式NOHRCNHNSCH3H3CCOOOH3CNHRCNHCH3OHCOOHOABβ-内酰胺类抗生素的作用机制近年来对细菌细胞膜进行了深入研究,发现细菌的细胞膜上有特殊的蛋白质分子,能与β-内酰胺类抗生素结合,被称之为青霉素结合蛋白(PenicillinBondingProteins,PBPs),它具有很高的转肽酶和羟肽酶活力,是这类抗生素抑制作用的靶蛋白。二、细菌对β-内酰胺类抗生素产生耐药性的作用机制1、抗生素作用靶位PBPs亲和力发生改变;2、破坏β-内酰胺类抗生素分子的β-内酰胺酶;3、药物外排介导的耐药机制。由PBPs-介导的对对β-内酰胺类抗生素产生耐药性的作用机制具有嵌入结构的青霉素耐药脑膜炎双球菌PBP2的基因结构有嵌入结构的7种不同国家和地区来源的青霉素耐药脑膜炎球菌PBP2的基因结构耐药菌名称PBPs改变情况革兰阳性菌枯草芽孢杆菌PBP2亲和力下降产气夹膜梭菌PBP1亲和力下降南非肺炎链球菌PBP2a亲和力下降新出现PBP2a’(为高分子量PBP2a)PBP2b丧失PBP1a和PBP1b亲和力下降美国肺炎链球菌PBP1和PBP1亲和力下降PBP2b含量降低新出现PBP2’屎链球菌新出现缓慢反应的或可诱导的PBPsS.faurens同上屎链球菌具有缓慢反应的PBPs革兰阴性菌奈瑟氏淋球菌PBP2亲和力降低、外膜蛋白缺失铜绿假单胞菌对所有PBPs的亲和力降低大肠埃希氏菌PBP3中的四个氨基酸被取代、亲和力降低嗜血流感菌PBP3a和PBP3b亲和力降低一些β-内酰胺抗生素耐药性细菌与PBPs的改变情况β-内酰胺酶介导的对β-内酰胺类抗生素产生耐药性的作用机制在耐药性革兰阳性菌如葡萄球菌中的β-内酰胺酶是以胞外酶的形式分泌至胞外来破坏这类抗菌药物,或是细菌含有的转肽酶不能与这类药物结合而产生耐药性。β-内酰胺酶介导的对β-内酰胺类抗生素产生耐药性的作用机制在革兰阴性菌中,这类抗菌药物透过细菌细胞外膜的孔蛋白进入细菌的周质,而在细胞周质中的β-内酰胺酶能够破坏已经进入胞内的这类药物,致使药物不能与PBPs结合而产生耐药性。β-内酰胺酶介导的对β-内酰胺类抗生素产生耐药性的作用机制β-内酰胺酶既能够存在于革兰氏阳性菌也能够存在于革兰氏阴性菌中,因而它对细菌的耐药性似乎所作的贡献更大;由PBPs介导的细菌耐药性仅存在于革兰氏阳性菌。因此,革兰氏阳性菌对β-内酰胺类抗菌药物的耐药性主要由β-内酰胺酶和PBPs的亲和力降低或产生新的PBPs所致;而革兰氏阴性菌对β-内酰胺类抗菌药物的耐药性主要由β-内酰胺酶和细胞膜渗透性屏障(药物难以透过或极慢透过孔蛋白)所致。β-内酰胺酶耐药性的发展1、1940年首次在大肠埃希氏菌中确定β-内酰胺酶。随后这种酶在许多其它细菌中被检测到。2、1944年明确了产生β-内酰胺酶(青霉素酶)是金葡菌对青霉素耐药的机理。当时这种耐药菌的产酶水平较低,但随着青霉素的广泛应用,产酶水平和机率都随之增加。3、20世纪50年代末在医院分离到的大多数金葡菌产生这种酶。β-内酰胺酶耐药性的发展1957年,随着青霉素母核6-APA被分离,出现了半合成青霉素,β-内酰胺酶作为一种耐药机理具有了重要意义。例如,广谱青霉素类,氨苄青霉素和羧苄青霉素以及后来的羟氨苄青霉素和替卡西林,对金葡菌和肠杆菌科的许多细菌产生的β-内酰胺酶是不稳定的,这些产生β-内酰胺酶的菌株对这些广谱抗生素产生了耐药性。拟杆菌属也产生β-内酰胺酶,对氨苄青霉素和羟β-内酰胺酶耐药性的发展1、在1961年氨苄青霉素首次应用时,在英国医院分离的大肠埃希氏菌耐药菌株占15%~20%,而近年来在医院内和医院外这些耐药菌株已高达40%;2、今天所产生的β-内酰胺酶粘膜炎布兰汉氏球菌比十年前更为常见,最近从各个不同国家分离出的这种耐药菌的比例已从38%上升到78%;3、另外,自半合成青霉素出现以来,过去β-内酰胺酶呈阴性的某些病原菌中也已出现了产生β-内酰胺酶菌株4、1974年,首次在流感嗜血杆菌中发现了产生β-内酰胺酶的耐药菌;5、1976年,第一次报告在淋球菌中有产生β-内酰胺酶的菌株;近来又在粪链球菌及脑膜炎双球菌中也出现了产生β-内酰胺酶的菌株。β-内酰胺酶的作用特征1、分布:β-内酰胺酶广泛分布于革兰氏阳性和阴性菌及放线菌和分支杆菌中;它们既能在细菌壁外,也能在细菌壁内起作用。2、存在形式:在革兰氏阳性细菌中,如金葡菌,这种酶分泌于细胞外,即为胞外酶,使菌体细胞上的抗生素失去活性;而在革兰氏阴性细菌中,β-内酰胺酶常存在于细胞周质内,即为胞内酶,该处也有青霉素靶酶,在这种情况下,抗生素在周质中被广泛灭活,而在细菌壁外的灭活是微不足道的。在有些情况下,产生β-内酰胺酶的遗传信息存在于染色体中;而在另一些情况下则存在于质粒中。β-内酰胺酶的作用特征3、传递:质粒的复制可以很快地从一个细菌细胞传递到另一个细菌细胞,这种传递不仅可发生于同种细菌间,而且也可发生在不同种细菌间甚至不同的属间。因此,就产生了在不相关的细菌间耐药性散播的可β-内酰胺酶的分类Richmond和Sykes分类法(表):这种分类系统的依据有3点:一是这种酶对不同β-内酰胺类抗生素的水解速度;二是对β-内酰胺酶抑制剂的敏感度;三是这种酶的产生是由质粒介导的还是由染色体介导的。由此可将β-内酰胺酶分成如下5种类型:Richmond&Sykesβ-内酰胺酶分类法分类底物抑制剂基因定位I头孢菌素类邻氯青霉素染色体II青霉素类邻氯青霉素和棒酸染色体III青霉素类和头孢菌素类邻氯青霉素和棒酸质粒IV青霉素类和头孢菌素类对-氯汞苯甲酸酯和棒酸染色体V青霉素类棒酸质粒Richmond&Sykesβ-内酰胺酶分类法Ⅰ型:这种类型的酶是由能高速水解头孢菌素类的β-内酰胺酶组成。因此通常被称为头孢菌素酶,它们是由染色体介导的。其典型酶是由大肠杆菌属、沙雷氏菌属和绿脓杆菌产Ⅱ型:这类酶是由变形杆菌所特有的β-内酰胺酶组成,它们是由染色体介导的。由于这类酶水解青霉素的速率比水解头孢菌素更快,所以也被称Ⅲ型:这类酶对青霉素和头孢菌素的活性大致相同,它们是Ⅳ型:这类酶是典型的由染色体介导的肺炎克雷伯氏菌所Ⅴ型:这类酶是由质粒介导的,包括大肠杆菌中的苯唑青霉素水解酶(该酶也能水解异恶唑类青霉素)以及与假单孢菌有关的,能很快水解羧苄青霉素的绿脓杆菌酶。Bush-Jacoby-Medeirosβ-内酰胺酶分类法分类法优先被水解的底物抑制剂代表性酶Bush-Jacoby-MedeirosRichmond&Sykes棒酸EDTAa1(C类)Ia,Ib,Id头孢菌素类--革兰氏阴性菌AmpC酶;MIR-12a(A类)未包括青霉素类+-革兰氏阳性菌青霉素酶2b(A类)III头孢菌素类青霉素类+-TEM-1、TEM-2、SHV-12be(A类)除IV类中的K1外,其余未包括青霉素类、窄谱和广谱头孢菌素类、单环类+-TEM-1至TEM-26、SHV-1至SHV-6、Oxytoca克雷伯氏K12br(A类)未包括青霉素类±-TEM-30至TEM-36、TRC-12c(A类)II,IV青霉素类羧苄青霉素+-PSE-1、PSE-3、PSE-42d(D类)V青霉素邻氯青霉素±-OXA-1至OXA-11、PSE-2(OXA-10)2e(A类)Ic头孢菌素类+-普通变形杆菌的诱导性头孢菌素酶2f(A类)未包括青霉素类、头孢菌素类、碳青霉烯类+-阴沟肠杆菌NMC-A、粘质沙雷氏菌Sme-13(B类,金属β-内酰胺酶)未包括大多数β-内酰胺类包括碳青霉烯类-+X.maltophiliaL1脆弱拟杆菌CcrA4(其它类)未包括青霉素类-?P.cepacia青霉素酶三、克服细菌对β-内酰胺抗生素产生耐药性的对策一个好的β-内酰胺类抗生素,能够有效地抑制粘肽的合成,则必须具备以下三个条件:1)有好的渗透性,使药物能达到作用部位;2)对β-内酰胺酶稳定,使β-内酰胺环不被酶解;3)对靶酶,即对青霉素结合蛋白有高的亲和力,从而抑制PBPs的酶活力,使细菌生长抑制或死亡。细菌对β-内酰胺类抗生素的产生耐药性的三种主要机制β-内酰胺酶抑制剂的发展1、早在20世纪40年代中期,已清楚地了解到抑制β-内酰胺酶能增强青霉素G的效力。抑制β-内酰胺酶的早期工作,包括抗β-内酰胺酶血清应用可能性的研究,以及各种可能成为β-内酰胺酶抑制剂的有机化合物的筛选。在这些化合物中,某些化合物显示了较弱的抑制活性,没有一个有希望可用于临床。β-内酰胺酶抑制剂的发展2、20世纪60年代随着半合成青霉素的出现,发现某些青霉素(如甲氧西林、乙氧萘青霉素和异恶唑类青霉素)有这种酶抑制剂的作用,又重新唤起了人们对β-内酰胺酶抑制剂的兴趣,并开始研究结合其它青霉素使用时的协同作用。但
本文标题:抗菌药物作用机制与细菌耐药性--陈代杰
链接地址:https://www.777doc.com/doc-6231726 .html