您好,欢迎访问三七文档
20第六章长期投资决策本章学习目标1.理解长期投资决策的概念和特征;2.掌握资金时间价值的概念和计算;3.掌握投资方案现金净流量的估算;4.掌握资金成本的概念和计算;5.掌握长期投资各评价指标的计算;6.能够运用长期投资评价指标对独立方案进行评价;7.能够运用长期投资评价指标对互斥方案进行评价;8.掌握长期投资决策的敏感性分析第一节长期投资决策概述一、长期投资决策的概念和特征长期投资是指涉及投入大量资金,投资所获得报酬要在长时期内逐渐收回,能在较长时间内影响企业经营获利能力的投资。与长期投资项目有关的决策,叫做长期投资决策。广义的长期投资包括固定资产投资、无形资产投资和长期证券投资等内容。而固定资产投资在长期投资中所占比例较大,所以狭义的长期投资特指固定资产投资,本章主要论述狭义的长期投资决策,长期投资有如下特征:1.投资金额大长期投资,特别是战略性扩大生产能力的投资需要的金额一般都较大,往往是企业多年的资金积累。在企业总资产中占到很大比重。因此长期投资对企业未来的财务状况和现金流量起到相当大的影响。2.影响时间长长期投资投资期和发挥作用的时间都较长,项目建成后对企业的经济效益会产生长久的效应,并有可能对企业的前途有决定性的影响。3.变现能力差长期投资的使用期长,一般不会在短期内变现,即使由于种种原因想在短期内变现,其变现能力也较差。长期投资项目一旦建成,想要改变是很困难的,不是无法实现,就是代价太大。4.投资风险大21长期投资投资项目的使用期长,面临的不确定因素很多,如原材料供应情况、市场供求关系、技术进步速度、行业竞争程度、通货膨胀水平等等都会影响投资的效果。所以固定资产投资面临较高的投资风险。长期投资不仅需要投入较多的资金,而且影响的时间长,投入资金的回收和投资所得收益都要经历较长的时间才能完成。在进行长期投资决策时,一方面要对各方案的现金流入量和现金流出量进行预测,正确估算出每年的现金净流量;另一方面要考虑资金的时间价值,还要计算出为取得长期投资所需资金所付出的代价,即资金成本。因此现金净流量、资金时间价值和资金成本是影响长期投资决策的重要因素。二、资金时间价值(一)资金时间价值的概念资金时间价值是指一定量资金在不同时点上价值量的差额。一定数量的货币资金在不同的时点上具有不同价值,其实质就是资金周转利用后会产生增值。一定量资金周转利用的时间越长,其产生的增值额也越大。今天的一元钱和将来的一元钱不同。例如,银行存款的年利率为6%,如果今天存入银行100元,一年以后就得到本利和106元。经过一年的时间,100元产生了增值额6元。这说明今天的100元和一年后的106元等值。换句话说,这项增值是因为放弃现在使用货币的机会,可以按一定利率和放弃时间长短计算其报酬,这种报酬就是资金时间价值。由于长期投资的投资额大,投资收益回收时间长,因此为了正确评价长期投资各备选方案,必须考虑资金的时间价值。在利润平均化规律的作用影响下,货币时间价值的一般表现形式就是在没有风险与通货膨胀条件下社会平均的资金利润率。由于资金时间价值的计算方法与利息的计算方法相同,很容易将资金时间价值与利息率相混淆。实际上,投资活动或多或少总存在风险,市场经济条件下通货膨胀也是客观存在的。利率既包含时间价值,也包含风险价值和通货膨胀的因素。只有在通货膨胀率很低的情况下,方可将几乎没有风险的政府债券的利息率视同资金时间价值。(二)资金时间价值的计算在资金时间价值的计算中,为了表示方便,采用以下符号:P——本金,又称现值;F——本金和利息之和(简称本利和),又称终值;I——利息;i——利率,又称折现率或贴现率;n——计算利息的期数。1、单利计息和复利计息单利计息是指只按本金计算利息,而利息部分不再计息的一种计息方式。单利计息情况下利息22的计算公式为:IPin单利计息情况下本利和(终值)的计算公式如下:(1)FPPinPin[例6-1]某人在银行存入1000元,年利率为6%,采用单利计息,要求分别计算第一、第二和第三年年末的应计利息和本利和。解:110006%160(I元)1100016%11060F()(元)210006%2120(I元)2100016%21120F()(元)310006%3180(I元)3100016%31180F()(元)复利计息是指本金加上已产生的利息再计算下一期利息的计息方法,即所谓“利上滚利”,即:第一年末本利和(终值)F1=P+P×i=P(1+i)第二年末本利和(终值)F2=P(1+i)(1+i)=P(1+i)2第三年末本利和(终值)F3=P(1+i)2(1+i)=P(1+i)3………………第n-1年末本利和(终值)Fn-1=P(1+i)n-1第n年末本利和(终值)Fn=P×(1+i)n所以,在复利计息情况下本利和(终值)的计算公式为:F=P×(1+i)n在复利计息情况下,利息的计算公式为:[11]nIFPPi()[例6-2]某人在银行存入1000元,年利率为6%,采用复利计息,要求分别计算第一、第二和第三年年末的应计利息和本利和。解:F1=1000×(1+6%)=1060(元)I1=1060-1000=60(元)F2=1000×(1+6%)2=1123.6(元)I2=1123.6-1000=123.6(元)F3=1000×(1+6%)3=1191.02(元)I3=1191.02-1000=191.02(元)在第一个计息期,单利和复利计算的利息相同,但在第二个及以后各个计息期,两者利息就不同了,复利计算的利息一定大于单利计算的利息,而且计息期越长,差异越大.在上面的计算公式中利率i和期数n一定要相互对应,例如i为年利率时,n应为年份数;i为月利率时,n则应为月份数,以此类推.在长期投资决策中,考虑资金时间价值一般是指复利,各个指标的计算也都是以复利为基础的.2.复利的终值与现值23(1)复利终值的计算终值又称将来值,是指现在一定量的资金在末来某一时点上的价值,也称本利和。已知现值P,利率为i,n期后的复利终值的计算公式为:F=P×(1+i)n式中(1+i)n通常称为利率为i,期数为n的“1元复利终值系数”,用符号(F/P,i,n)表示,其数值可以直接查阅书后附表一。例如查表得到(F/P,8%,5)=1.4693,说明在复利计息的条件下,年利率为8%,现在的1元相当于5年后的1.4693元。于是复利现值的计算公式又可表示为:F=P×(1+i)n=P×(F/P,i,n)[例6-3]某公司将10000元存入银行,银行年利率为8%,每年复利一次,该公司5年后将可取出多少钱?解:F=10000×(F/P,8%,5)=10000×1.4693=14693元从以上计算可知,该公司5年后从银行可取出本利和14693元。(2)复利现值的计算复利现值是指未来某一时点上的一笔资金按复利计算的现在价值。复利现值是复利终值的逆运算,其计算公式为:P=F×(1+i)-n式中(1+i)-n通常称为利率为i,期数为n的“1元复利现值系数”,用符号(P/F,i,n)表示,其数值可以直接查阅书后附表二。例如查表得到(P/F,8%,5)=0.6806,说明在复利计息的条件下,年利率为8%,5年后的1元仅相当于现在的0.6806元。于是复利现值的计算公式又可表示为:P=F×(1+i)-n=F×(P/F,i,n)[例6-4]某公司准备在5年以后用10000元购买一台设备,银行年利率为8%,每年复利一次,该公司现在需一次存入银行多少钱?解:P=10000×(P/F,8%,5)=10000×0.6806=6806元公司只要现在存入6080元,5年后可取出本利和10000元。3.年金的终值与现值年金是指一定时期内,以相同的时间间隔连续发生的等额收付款项,以A表示。年金在现实生活中有广泛的应用,如定期支付的租金、折旧费、保险费、利息、分期付款、零存整取或整存零取的储蓄等等。年金有许多不同的种类,如普通年金、预付年金、递延年金和永续年金等等。普通年金是指每笔等额收付款项都发生在期末,又称后付年金。普通年金是实际工作中最为常用的年金,所以以后凡涉及年金问题若不作特殊说明均指普通年金。24(1)普通年金终值的计算普通年金终值是指一定时期内每期期末等额款项的复利终值之和。例如企业每年年末存入资金A,年利率为i,每年复利一次,则n年后的普通年金终值如图6-1所示:AAAAA0123n-1n6-1普通年金的终值计算示意图第1年年末的A折算到第n年末的终值为A×(1+i)n-1第2年年末的A折算到第n年末的终值为A×(1+i)n-2第3年年末的A折算到第n年末的终值为A×(1+i)n-3……….第n-1年年末A折算到第n年末的终值为A×(1+i)1第n年年年末A折算到第n年末的终值为A×(1+i)0可见年金终值的计算公式为:F=A×(1+i)n-1+A×(1+i)n-2+…+A×(1+i)2+A×(1+i)+A(1)将(1)式两边同乘上(1+i)得:(1+i)×F=A×(1+i)n+A×(1+i)n-1+…+A×(1+i)3+A×(1+i)2+A×(1+i)(2)将(2)减(1)式得:(1+i)×F-F=A×[(1+i)n-1](1+i)n-1经整理:F=A×i(1+i)n-1式中i通常称为利率为i,期数为n的“1元年金终值系数”,用符号(F/A,i,n)表示,其数值可以直接查阅书后附表三。于是年金终值的计算公式又可表示为:(1+i)n-1F=A×=A×(F/A,i,n)i[例6-5]某人在银行每年年末存入1000元,年利率为6%,8年后可获本利和为多少?解:F=1000×(F/A,6%,8)=1000×9.8975=9897.5(元)25从以上计算可知,该人8年后从银行可取出本利和9897.5元。(2)年偿债基金的计算偿债基金是指为了在未来某一时点偿还一定的金额而提前在每年年末存入相等的金额。它是年金终值的逆运算,亦属于已知整取求零存的问题,即由已知的年金终值F,求年金A。计算公式如下:iA=F×(1+i)n-1i式中称为利率为i,期限为n的“偿债基金系数”,记为(A/F,i,n),其数值(1+i)n-1可通过查偿债基金系数表得到,一般可根据年金终值系数的倒数推算出来。所以上式也可表示为:A=F×(A/F,i,n)=F×[1/(F/A,i,n)]【6-6】某企业有一笔500万元的长期债务,在第5年末到期。企业准备在5年内每年末存入银行一笔资金,以便在第5年末偿还这笔长期债务,假定银行利率为5%,则在每年年末应存入银行多少钱?解:A=500×(A/F,5%,5)=500×[1/(F/A,5%,5)]=500×(1/5.5256)=90.4879(万元)企业每年末应存入银行90.4879元.(3)普通年金现值的计算普通年金现值是指一定时期内每期期末等额款项的复利现值之和。例如企业每年年末存入资金A,年利率为i,则该企业n年内的年金现值如图6-2所示:AAA...AA0123n-1n图6-2普通年金的终值计算示意图第1年年末的A折算到第1年年初的现值为A×(1+i)-1第2年年末的A折算到第1年年初的现值为A×(1+i)-226第3年年末的A折算到第1年年初的现值为A×(1+i)-3..第(n-1)年年末的A折算到第1年年初的现值为A×(1+i)-(n-1)第n年年末的A折算到第1年年初的现值为A×(1+i)-n可见年金现值的计算公式为:P=A×(1+i)-1+A×(1+i)-2+A×(1+i)-3+...+A×(1+i)-(n-1)+A×(1+i)-n(3)将(3)式两边同乘上(1+i)得:(1+i)×P=A+A×(1+i)-1+A×(1+i)-2+...+A×(1+i)-(n-2)+A×(1+i)-(n-1)(4)将(4)式减(3)式得:(1+i)×P-P=A×[1-(1+i)-n]1-(1+i)-n经整理:P=A×i1-(1+i)-n式中i称为利率为i,期限为n的“1元年金现值系数”,记作(P/A,
本文标题:长期投资决策
链接地址:https://www.777doc.com/doc-624130 .html