您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第二十三章 一元二次方程的导学案
第二十三章一元二次方程23.1一元二次方程(1课时)学习目标:1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。重点:由实际问题列出一元二次方程和一元二次方程的概念。难点:由实际问题列出一元二次方程。准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。导学流程:自学课本导图,走进一元二次方程分析:现设长方形绿地的宽为x米,则长为米,可列方程x()=,去括号得①.你知道这是一个什么方程吗?你能求出它的解吗?想一想你以前学过什么方程,它的特点是什么?探究新知【例1】小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm,那么剪去的正方形的边长是多少?设剪去的正方形的边长为xcm,你能列出满足条件的方程吗?你是如何建立方程模型的?合作交流动手实验一下,并与同桌交流你的做法和想法。列出的方程是②.自主学习【做一做】根据题意列出方程:1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。3、一块面积是150cm长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述三个方程以及①②两个方程的结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义。一元二次方程的定义:。展示反馈【挑战自我】判断下列方程是否为一元二次方程。【我学会了】1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。2、一元二次方程的一般形式:,其中二次项,是一次项,是常数项,二次项系数,一次项系数。【例2】将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。(1)(2)【巩固练习】教材第19页练习归纳小结1、本节课我们学习了哪些知识?2、学习过程中用了哪些数学方法?3、确定一元二次方程的项及系数时要注意什么?达标测评(A)1、判断下列方程是否是一元二次方程;(1)()(2)()(3)()(4)()2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x2-x=2;(2)7x-3=2x2;(3)(2x-1)-3x(x-2)=0(4)2x(x-1)=3(x+5)-4.3、判断下列方程后面所给出的数,那些是方程的解;(1)±1±2;(2)±2,±4(B)1、把方程(化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项。2、要使是一元二次方程,则k=_______.3、已知关于x的一元二次方程有一个解是0,求m的值。拓展提高1、已知关于x的方程。问(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?2、思考题:你能给出一元三次方程的概念及一般形式吗?23.2一元二次方程的解法(5课时)第1课时学习目标:1、初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如=a(a≥0)或(mx+n)=a(a≥0)的方程;会用因式分解法(提公因式法、公式法)解某些一元二次方程;2、理解一元二次方程解法的基本思想及其与一元一次方程的联系,体会两者之间相互比较和转化的思想方法;3、能根据具体问题的实际意义检验结果的合理性。重点:掌握用直接开平方法和因式分解法解一元二次方程的步骤。难点:理解并应用直接开平方法和因式分解法解特殊的一元二次方程。导学流程:自主探索试一试解下列方程,并说明你所用的方法,与同伴交流.(1)x2=4;(2)x2-1=0;解:x=____解:左边用平方差公式分解因式,得x=__________________=0,必有x-1=0,或______=0,得x1=___,x2=_____.精讲点拨(1)这种方法叫做直接开平方法.(2)这种方法叫做因式分解法.合作交流(1)方程x2=4能否用因式分解法来解?要用因式分解法解,首先应将它化成什么形式?(2)方程x2-1=0能否用直接开平方法来解?要用直接开平方法解,首先应将它化成什么形式?课堂练习反馈调控1.试用两种方法解方程x2-900=0.(1)直接开平方法(2)因式分解法2.解下列方程:(1)x2-2=0;(2)16x2-25=0.解(1)移项,得x2=2.(2)移项,得_________.直接开平方,得.方程两边都除以16,得______所以原方程的解是直接开平方,得x=___.,.所以原方程的解是x1=___,x2=___.3.解下列方程:(1)3x2+2x=0;(2)x2=3x.解(1)方程左边分解因式,得_______________所以__________,或____________原方程的解是x1=______,x2=______(2)原方程即_____________=0.方程左边分解因式,得____________=0.所以__________,或________________原方程的解是x1=_____,x2=_________总结归纳以上解方程的方法是如何使二次方程转化为一次方程的?用直接开平方法和因式分解法解一元二次方程的步骤分别是什么?巩固提高解下列方程:(1)(x+1)2-4=0;(2)12(2-x)2-9=0.分析两个方程都可以转化为()2=a的形式,从而用直接开平方法求解.解:(1)原方程可以变形为(_____)2=____,(2)原方程可以变形为________________________,有________________________.所以原方程的解是x1=________,x2=_________.课堂小结你今天学会了解怎样的一元二次方程?步骤是什么?它们之间有何联系与区别?(学生思考整理)达标测评(A)1、解下列方程:(1)x2=169;(2)45-x2=0;(3)12y2-25=0;(4)x2-2x=0;(5)(t-2)(t+1)=0;(6)x(x+1)-5x=0.(7)x(3x+2)-6(3x+2)=0.(B)2、小明在解方程x2=3x时,将方程两边同时除以x,得x=3,这样做法对吗?为什么会少一个解?拓展提高1、解下列方程:(1)+2x-3=0(2)-50x+225=0(教师引导学生用十字相乘法分解因式。)2、构造一个以2为根的关于x的一元二次方程。第2课时学习目标:1、掌握用配方法解数字系数的一元二次方程;2、理解解方程中的程序化,体会化归思想。重点:用配方法解数字系数的一元二次方程;难点:配方的过程。导学流程自主学习自学教科书例4,完成填空。精讲点拨上面,我们把方程x2-4x+3=0变形为(x-2)2=1,它的左边是一个含有未知数的________式,右边是一个_______常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.练一练:配方.填空:(1)x2+6x+()=(x+)2;(2)x2-8x+()=(x-)2;(3)x2+x+()=(x+)2;从这些练习中你发现了什么特点?(1)________________________________________________(2)________________________________________________合作交流用配方法解下列方程:(1)x2-6x-7=0;(2)x2+3x+1=0.解(1)移项,得x2-6x=____.方程左边配方,得x2-2·x·3+__2=7+___,即(______)2=____.所以x-3=____.原方程的解是x1=_____,x2=_____.(2)移项,得x2+3x=-1.方程左边配方,得x2+3x+()2=-1+____,即_____________________所以___________________原方程的解是:x1=______________x2=___________总结规律用配方法解二次项系数是1的一元二次方程?有哪些步骤?深入探究用配方法解下列方程:(1)(2)这两道题与例5中的两道题有何区别?请与同伴讨论如何解决这个问题?请两名同学到黑板展示自己的做法。课堂小结你今天学会了用怎样的方法解一元二次方程?有哪些步骤?(学生思考后回答整理)达标测评(A)用配方法解方程:(1)x2+8x-2=0(2)x2-5x-6=0.(3)2x2-x=6(4)(4)x2+px+q=0(p2-4q≥0).(5)4x2-6x+()=4(x-)2=(2x-)2.拓展提高已知代数式x2-5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?第3课时学习目标1、经历推导求根公式的过程,加强推理技能训练,进一步发展逻辑思维能力;2、会用公式法解简单系数的一元二次方程;3进一步体验类比、转化、降次的数学思想方法。重点:用公式法解简单系数的一元二次方程;难点:推导求根公式的过程。导学流程复习提问:1、用配方法解一元二次方程的步骤有哪些?2、用配方法解方程3x2-6x-8=0;3、你能用配方法解下列方程吗?请你和同桌讨论一下.ax2+bx+c=0(a≠0).推导公式用配方法解一元二次方程ax2+bx+c=0(a≠0).因为a≠0,方程两边都除以a,得_____________________=0.移项,得x2+x=________,配方,得x2+x+______=______-,即(____________)2=___________因为a≠0,所以4a2>0,当b2-4ac≥0时,直接开平方,得_____________________________.所以x=_______________________即x=_________________________由以上研究的结果,得到了一元二次方程ax2+bx+c=0的求根公式:精讲点拨利用这个公式,我们可以由一元二次方程中系数a、b、c的值,直接求得方程的解,这种解方程的方法叫做公式法.合作交流b2-4ac为什么一定要强调它不小于0呢?如果它小于0会出现什么情况呢?展示反馈学生在合作交流后展示小组学习成果。①当b2-4ac>0时,方程有__个________的实数根;(填相等或不相等)②当b2-4ac=0时,方程有___个____的实数根x1=x2=________③当b2-4ac<0时,方程______实数根.巩固练习1、做一做:(1)方程2x-3x+1=0中,a=(),b=(),c=()(2)方程(2x-1)=-4中,a=(),b=(),c=().(3)方程3x-2x+4=0中,=(),则该一元二次方程()实数根。(4)不解方程,判断方程x-4x+4=0的根的情况。2、应用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x-12=0;(4)4x2+4x+10=1-8x.解(1)这里a=___,b=___,c=______,b2-4ac=____________=_________所以x==_________=____________即原方程的解是x1=_____,x2=_____(2)将方程化为一般式,得_________________=0.因为b2-4ac=_________所以x=_____________=_______________原方程的解是x1=________,x2=_____(3)因为___________________,所以x=____________=__________=__________原方程的解是x1=________,x2=__________.(4)整理,得_______________=0.因为b2-4ac=_________,所以x1=x2=________课堂小结1、一元二次方程的求根公式是什么?2、用公式法解一元二次方程的步骤是什么?达标测评(A)1、应用公式法解方
本文标题:第二十三章 一元二次方程的导学案
链接地址:https://www.777doc.com/doc-6250550 .html