您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 第二章 货币时间价值
第二章货币的时间价值第一节货币的时间价值第二节风险和报酬第一节货币的时间价值100元=一年后的100元?通货膨胀——购买力下降投资——利息、利润等投资收益,货币增加第一节货币的时间价值货币的时间价值——指货币经过一定时间的投资和再投资所增加的价值,也称资金的时间价值。通常情况下,它相当于没有风险和通货膨胀情况下的社会平均利润率。(本杰明·弗兰克说:钱生钱,并且所生之钱会生出更多的钱。)一、货币时间价值的含义第一节货币的时间价值二、货币时间价值的计算(一)现值、终值S01234nP终值(S)——指现在一定量货币在未来某一时点上的价值。现值(P)——指未来一定量的货币折合成现在的价值。第一节货币的时间价值根据利息的计算方法,可分为:单利——每期均按本金计算利息,利息不转入本金。复利——以当期期末的本利和为基础计算下期的利息。设:P—现值(本金);S—终值(本利和);i—利率(折现率);n—计息期数;I—利息注意:一年以360天计;一季度以90天计;一个月以30天计。(二)单利和复利的计算第一节货币的时间价值1、单利计算1)单利终值I=P×i×nS=P+I=P(1+i×n)[例1]某人有5000元存入银行,3个月到期,如利率为8%,则当前本利和为:S=5000×(1+8%/12×3)=5100(元)第一节货币的时间价值2)单利现值[例2-1]某人在银行存了一笔钱,利率为8%。3个月到期后一共拿到本利和5100元,请问,当初某人在银行存了多少钱?[例2-2]企业销售产品收到对方开来的一张3个月的不带息商业承兑汇票,票面金额为150000元,一个月后,企业因急需现金,持票向银行贴现,贴现率为9%,企业可得多少现金?P=S-I=S-S×i×n)1(niSISPS=P+I)1(niSPS=P+I=P+P×i×n=P×(1+i×n)第一节货币的时间价值[例2-3]企业销售产品收到对方开来的一张3个月的带息商业承兑汇票,票面金额为150000元,票面利率为6%,一个月后,企业因急需现金,持票向银行贴现,贴现率为9%,企业可得多少现金?解:出票人到期应付的本利和即票面终值为:S=150000×(1+6%×3/12)=152250(元)向银行贴现时:P=152250×(1-9%×2/12)=149966.25(元)第一节货币的时间价值2、复利的计算1)复利终值第一年:S1=P(1+i)第二年:S2=S1(1+i)=P(1+i)(1+i)=P(1+i)2第三年:S3=S2(1+i)=P(1+i)2(1+i)=P(1+i)3………第n年:Sn=P(1+i)n第一节货币的时间价值[例3]某人现存入银行800元,利率为10%,8年到期,且按复利计息,问到期可拿多少钱?S=800×(1+10%)8=800×(S/P,10%,8)=1714.88(元)Sn=P(1+i)n其中(1+i)n称为复利终值系数,记为(S/P,i,n),可查表。复利终值的基础公式:S=P(S/P,i,n)第一节货币的时间价值2)复利现值复利现值是指在今后某一时点上的资金,折合为现在的价值。其中称为复利现值系数,记为(P/S,i,n),可查复利现值系数表。复利现值的基础公式:P=S(P/S,i,n)niPS)1(niSP11ni11第一节货币的时间价值[例4]某人现存入银行一笔钱,利率为10%,按复利计息,8年到期后共拿到1714.88元,问当初他存入银行多少钱?P=S×(P/S,i,n)=1714.88×(P/S,10%,8)=1714.88×0.4665=800(元)例[5]某人在2009年1月1日存入银行1000元,年利率为12%。要求计算:(1)每年复利一次,2012年1月1日存款账户的余额是多少?(2)每季度复利一次,2012年1月1日存款账户的余额是多少?解:(1)每年复利一次时S=P×(S/P,12%,3)=1000×1.4049=1404.9(元)(2)每季度复利一次时i=12%/4=3%,n=12S=P×(S/P,3%,12)=1000×1.4258=1425.8(元)第一节货币的时间价值第一节货币的时间价值(三)名义利率与实际利率(有效年利率)设名义利率为i,一年复利M次,实际利率r,实际利率与名义利率之间的关系是:1+r=r=-1MMi)1(MMi)1(第一节货币的时间价值名义利率和实际利率的关系:1)单利情况下,名义利率=实际利率;2)复利情况下,当计息周期为一年时,名义利率=实际利率;当计息周期短于一年时,实际利率名义利率,计息周期越短,实际利率越大;当计息周期长于一年时,实际利率名义利率,计息周期越长。实际利率越小;第一节货币的时间价值[例6]将10000元存入银行,年利率为6%,每半年复利一次,实际利率为多少?%09.612%612r%18.6112%6112r若一个月复利一次,则:年金(A)1)概念年金是指在某一段时间内等额、定期的收付款项。(各种保险、分期付款赊购、房贷、养老金等等)2)种类普通年金:每期期末收付的年金。(后付年金)预付年金:每期期初收付的本金。(即付年金)递延本金:若干期以后的某一期开始连续发生的年金。永续年金:一种无限期等额支付的年金。第一节货币的时间价值第一节货币的时间价值1、普通年金终值和现值的计算0123…n-1nAAAAA1)普通年金终值设:A——年金数额。S=A+A(1+i)+A(1+i)2+……+A(1+i)n-1=(三)年金的计算121111niiiA第一节货币的时间价值上式中为年金终值系数,可写成(S/A,i,n),可通过查年金终值表得到。则:S=A(S/A,i,n)iiASn11iin11第一节货币的时间价值2)偿债基金的计算偿债基金:即为使年金终值达到既定金额每年应支付的年金数额。iiASn11),,/(),,/(11niSASniASSiiSAn),,/(11)1(),,/(niASiiniSAn其中,为偿债基金系数。第一节货币的时间价值[例7]某人参加零存整取储蓄,每年末存入300元,利率为5%,5年末可得本利和多少?S=300×(S/A,5%,5)=1657.68(元)[例8]某人要求6年以后得到8000元,年利率为10%,问每年末应存入多少钱?)(94.1036715.780006%,10,/8000)6%,10,/(8000元ASASA第一节货币的时间价值3)普通年金现值0123…n-1nAAAAAP=A(1+i)-1+A(1+i)-2+……+A(1+i)-(n-1)+A(1+i)-n上式经推导,可得:iiAPn11第一节货币的时间价值上式中为年金现值系数,可写成(P/A,i,n),可通过查年金现值系数表得到。则:P=A(P/A,i,n)iin11第一节货币的时间价值[例9]某人拟于明年初借款42000元,从明年年末开始,每年年末还本付息额均为6000元,连续10年还清,假设借款利率为8%,此人是否能按计划借到款项?解:第一种方法:P=6000×(P/A,8%,10)=40260.6(元)<42000元故借不到。(元)元6000)(22.62597101.64200010%,8,/42000APA借不到。第二种方法:第一节货币的时间价值4)投资回收系数例:假设以8%的利率借款500万元,投资于某个寿命为12年的新技术项目,每年至少要收回多少现金才是有利的?)(6635001327.05000000)12%,8,/(15000000),,/(1)1(1),,/(11元APniAPPiiPAniAPAiiAPnn第一节货币的时间价值上述计算过程中的是普通年金现值系数的倒数,它可以把普通年金现值折算为年金,称作投资回收系数。普通年金终值系数偿债基金系数普通年金现值系数投资回收系数nii)1(1第一节货币的时间价值2、即付年金终值和现值的计算1)即付年金终值0123…n-1nAAAAA)1(),,/(iniASAS]1)1,,/[()1,,/(niASAAniASAS方法一:-1方法二:A第一节货币的时间价值[例10]例5中,若某人每年初存入300元,利率为5%,5年末得本利和为多少?S=300×(S/A,5%,5)×(1+5%)=1740.56(元)或:S=300×[(S/A,5%,6)-1]=1740.57(元)第一节货币的时间价值2)即付年金现值0123…n-1nAAAAA方法一:)1(),,/(iniAPAP11,,/)1,,/(niAPAAniAPAP-1方法二:第一节货币的时间价值[例11]例7中,该人愿意每年年初支付6000元,连续支付10年,利率为8%,是否能借到42000元?解:P=6000×(P/A,8%,10)×(1+8%)=43481.45(元)或P=6000×[(P/A,8%,9)+1]=43481.4(元)可以借到。第一节货币的时间价值3、递延年金现值的计算012…m-1mm+1m+2…n-1nAAAA方法一:P=A(P/A,i,n-m)×(P/S,i,m)AAAA方法二:P=A(P/A,i,n)-A(P/A,i,m)第一节货币的时间价值[例12]某人在年初存入一笔钱,计划从第9年开始,每年末提取现金6000元,连续提取10年,在利率为7%的情况下,现应存入多少钱?方法一:P=6000×(P/A,7%,10)·(P/S,7%,8)=24526.方法二:P=6000×(P/A,7%,18)-6000×(P/A,7%,8)=24526.8(元)第一节货币的时间价值4、永续年金现值的计算0123…AAA当n→∞(1+i)-n→0则:iiAPn)1(1iAP第一节货币的时间价值(四)利率和计息期数的计算1、利率(i)的计算(1)求出换算系数,设为PSniPS),,/(ASniAS),,/(SPniSP),,/(APniAP),,/(第一节货币时间价值例.某公司向银行借入23000元,借款期为9年,每年的还本付息额为4600元,那借款利率为多少?解:4600×(P/A,i,9)=23000(P/A,i,9)=23000/4600=5(2)查期数为n的相应的系数表,找出与最接近的两个上下临界值,设为β1和β2(β2<α<β1),找出β1和β2对应的临界利率,分别用i1和i2表示。例中:查年金现值系数表,期数n=9β1=5.3283>5i1=12%β2=4.9164<5i2=14%第一节货币的时间价值(3)用插值法计算所求的贴现率12%5.3283i514%4.91643283.59164.459164.4%12%14%14i第一节货币的时间价值2、计息期数(n)的计算计算步骤同利率(i)的计算。例:某企业拟购买一台新设备,更换目前的旧设备。信设备较旧设备高出2000元,但每年可节约成本500元。若利率为10%,问新设备应至少使用多少年对企业而言才有利?一、风险的含义风险是指在一定条件下和一定时期内某一行为可能发生的各种结果,以及每种结果出现的各种可能性。(即未来结果的不确定性)财务管理中风险的概念:企业的实际收益与预期收益发生背离,从而有蒙受经济损失的可能性。第二节风险和报酬二、风险的特征1、风险与不确定性的关系风险——事前知道某种行为所有可能的结果,并知道每种结果出现的概率。不确定性——事前不知道某种行为所有可能的结果,或虽然知道可能的结果,但不知道它们出现的概率。2、风险具有客观性3、风险是可预测的第二节风险和报酬4、风险的大小随时间延续而变化三、风险的类别从个别理财主体的角度:从公司本身看:市场风险(不可分散风险、系统风险)——影响市场上所有企业的风险。企业特别风险(可分散风险
本文标题:第二章 货币时间价值
链接地址:https://www.777doc.com/doc-626781 .html