您好,欢迎访问三七文档
考纲要求1.掌握几种常见的数列的通项公式求法.2.会将数列进行适当的变形,转化为可求通项的数列.1.在数列1,1,2,3,5,8,13,,34,55,x…中,x的值是()A.19B.20C.21D.22基础自测【答案】C【解析】观察可知21nnnaaa,∴81321x.2.数列}{na中,11a,对所有的2n都有123aaa…2nan,则3a()A.94B.32C.259D.2516【答案】A【解析】212332123924aaaaaa.3.在数列}{na中,2,121aa,nnnaaa122,则4a()A.3B.4C.5D.6【答案】B【解析】∵nnnaaa122,∴数列}{na为等差数列,∴211d,∴41314a.4.若数列}{na中,113a,且对任意的正整数,pq都有pqpqaaa,则na=()A.211()3nB.11()3nC.1()3nD.13【答案】C【解析】∵令,1pnq,∴11nnaaa,∴113nnaa.∴数列{}na为等比数列,∴1111()()333nnna.若知数列的前n项和nS,则11,1,,2.nnnSnaSSn注意:对于1n时的情况一定要检验,若当1n时,1a也满足na的表达式,则两式可合并.典例剖析1.通用公式法【例1】已知数列}{na的前n项和21nSn,求数列{}na的通项公式.【解析】110aS,当2n时,221(1)[(1)1]21nnnaSSnnn.∵10211a,∴0,1,21,2.nnann【变式】已知各项均为正数的数列}{na的前n项和满足1nS,且6(1)(2)nnnSaa,*Nn,求数列{}na的通项公式.【解析】由11111(1)(2)6aSaa,解得11a或12a,∵111aS,∴12a.∵111111(1)(2)(1)(2)66nnnnnnnaSSaaaa,∴13nnaa,或1nnaa,∵0na,∴13nnaa,∴}{na是以2为首项,公差为3的等差数列,∴}{na的通项为31nan.递推关系形如1()nnaafn.方法:变形为1()nnaafn,用累加法求解.即:11221()()()nnnnnaaaaaaa1a(2)n.2.累加法【例2】已知数列}{na满足12a,121,(2)nnaann,求na.【解析】∵当2n时,121nnaan,∴121nnaan,∴11221()()()nnnnnaaaaaaa1a[(21)(23)3]2nn2[(21)3](1)212nnn,∵21211a,∴21nan.【变式】已知数列}{na满足nnaaann2111,2,求na.【解析】121nnaann11111nnnn∴nnaann1111,112121nnaann,…,21112aa,∴11111()()(1)21212nannnn13n,∵11231a,∴13nan.递推关系形如1()nnafna.方法:变形为1()nnafna,用累乘法求解.即:112nnnnnaaaaa…211aaa(2)n.3.累乘法【例3】已知数列}{na满足11a,12nnnaa,求na.【解析】∵12nnnaa,∴12nnnaa,∴3241231nnaaaaaaaa121222n,∴(1)12(1)2122nnnnaa,又11a,∴(1)22nnna.【变式】已知数列}{na满足11a,)(1nnnaana,求na.【解析】∵)(1nnnaana,∴1(1)nnnana,∴11nnanan,∴3241231nnaaaaaaaa2341231nn,∴1nana,又11a,∴nan.递推关系形如1innaa,其中Ri且01ii,数列na是正项数列.方法:对等式两边同时取对数得nnaialglg1.从而化为iaannlglg1,可知数列nalg是首项为1lga,公比为i的等比数列.4.对数法【例4】已知数列}{na满足21a,21nnaa,求na.【解析】在等式21nnaa,两边取常用对数得nnaalg2lg1,∴2lglg1nnaa,∴数列nalg是以2lg为首项,以2为公比的等比数列,∴1212lg2lg2lgnnna,∴122nna.【变式】已知数列}{na满足21a,212nnnaaa,求na.【解析】∵212nnnaaa,211(1)nnaa,两边取对数得1lg(1)2lg(1)nnaa,∴1lg(1)2lg(1)nnaa,∴{lg(1)}na是以1lg(1)lg3a为首项,以2为公比的等比数列,∴112lg(1)2lg3lg3nnna,∴1213nna,∴1231nna.数列的通项公式是常考的重点内容,累加、累乘法是用来解决问题的基础,是训练的重点.归纳反思
本文标题:(广东专用)2014高考数学第一轮复习用书 备考学案 第44课 递推数列求通项(1)课件 文
链接地址:https://www.777doc.com/doc-6271987 .html