您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 数学:第25章解直角三角形复习课件(华东师大版九年级上)[1]
Copyright2004-2009版权所有盗版必究Copyright2004-2009版权所有盗版必究三边之间的关系a2+b2=c2(勾股定理);锐角之间的关系∠A+∠B=90º边角之间的关系(锐角三角函数)tanA=absinA=ac1、cosA=bcACBabc解直角三角形的依据Copyright2004-2009版权所有盗版必究2、30°,45°,60°的三角函数值30°45°60°sinacosatana2232333123222121┌┌450450300600Copyright2004-2009版权所有盗版必究在解直角三角形及应用时经常接触到的一些概念lhα(2)坡度tanα=hl概念反馈(1)仰角和俯角视线铅垂线水平线视线仰角俯角(3)方位角30°45°BOA东西北南α为坡角Copyright2004-2009版权所有盗版必究解直角三角形:(如图)1.已知a,b.解直角三角形(即求:∠A,∠B及C边)2.已知∠A,a.解直角三角形3.已知∠A,b.解直角三角形4.已知∠A,c.解直角三角形bABCa┌c只有下面两种情况:(1)已知两条边;(2)已知一条边和一个锐角Copyright2004-2009版权所有盗版必究【热点试题归类】题型1三角函数1.在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值为_______.2.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值为______.3.如图1,在△ABC中,∠C=90°,BC=5,AC=12,则cosA等于()1312.,512.,135.,122.DCBA3535DCopyright2004-2009版权所有盗版必究4.如图2,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知AC=5BC=2,那么sin∠ABC=(),A.52255...3352BCDA.tan∠AEDB.cot∠AEDC.sin∠AEDD.cos∠AED5.如图3所示,AB是⊙O的直径,弦AC、BD相交于E,则CDAB等于()6.计算:|-28|+(cos60°-tan30°)+.AD123Copyright2004-2009版权所有盗版必究题型2解直角三角形1.如图4,在矩形ABCD中DE⊥AC于E,设∠ADE=a,且cosα=35AB=4,则AD的长为(),162016..335CDA.3B.2.2002年8月在北京召开的国际数学家大会会标如图5所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a+b的值为()A.35B.43C.89D.97BBCopyright2004-2009版权所有盗版必究题型3解斜三角形1.如图6所示,已知:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积(结果可保留根号).2.如图,海上有一灯塔P,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在它的北偏东60°的方向,继续行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向,问客轮不改变方向继续前进有无触礁的危险?Copyright2004-2009版权所有盗版必究解:过C作CD⊥AB于D,设CD=x.在Rt△ACD中,cot60°=ADCD3在Rt△BCD中,BD=CD=x.∴33x+x=8.解得x=4(3-).33=16(3-)=48-16.,33∴AD=x.12123AB·CD=×8×4(3-∴S△ABC=)Copyright2004-2009版权所有盗版必究2.解:过P作PC⊥AB于C点,据题意知:AB=9×26=3,∠PAB=90°-60°=30°,∠PBC=90°-45°=45°,∠PCB=90°.∴PC=BC.在Rt△APC中,PC3.∴客轮不改变方向继续前进无触礁危险.3PCPCPCACABBCPCtan30°=,33333,32PCPCPC即=,Copyright2004-2009版权所有盗版必究3.如图,某校九年级3班的一个学生小组进行测量小山高度的实践活动.部分同学在山脚点A测得山腰上一点D的仰角为30°,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为45°,山腰点D的俯角为60°.请你帮助他们计算出小山的高度BC(计算过程和结果都不取近似值).Copyright2004-2009版权所有盗版必究在Rt△ADF中,AD=180,∠DAF=30°,∴DF=90,AF=9033.解:如图设BC=x,3解得x=90+90.(x-90).FC=AC-AF=x-90.∵∠BAC=∠ABC=45°,∴AC=BC=x.∴BE=BC-EC=x-90.在Rt△BDE中,∠BDE=60°,∴DE=33333BE=.(x-90)=x-90333∵DE=FC,∴.Copyright2004-2009版权所有盗版必究4.如图,在观测点E测得小山上铁塔顶A的仰角为60°,铁塔底部B的仰角为45°.已知塔高AB=20m,观察点E到地面的距离EF=35m,求小山BD的高(精确到0.1m,3≈1.732).Copyright2004-2009版权所有盗版必究4.解:如图,过C点作CE⊥AD于C.x-x.解得x=10∵AB=AC-BC,即20=33∴BD=BC+CD=BC+EF3设BC=x,则EC=BC=x.在Rt△ACE中,AC=x,+10.3+10+35≈45+10×1.732≈62.3(m).所以小山BD的高为62.3m.=10Copyright2004-2009版权所有盗版必究题型4应用举例1.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高(如图1),她测得CB=10米,∠ACB=50°,请你帮助她算出树高AB约为________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)12Copyright2004-2009版权所有盗版必究2.如图2,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米,已知小华的身高为1.6米,那么分所住楼房的高度为________米.3.如图3,两建筑物AB和CD的水平距离为30米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为______米.48203Copyright2004-2009版权所有盗版必究4.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).Copyright2004-2009版权所有盗版必究1.73,3CDDEABBExy即1.75,10FGGHABBExy即4.解:设AB=x米,BD=y米.由△CDE∽△ABE得.①由△FGH∽△ABH得.②由①,②得y=7.5,x=5.95≈6.0米.所以路灯杆AB的高度约为6.0米.Copyright2004-2009版权所有盗版必究5.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=65°,∠DAE=45°,点D到地面的垂直距离DE=3m,求点B到地面的垂直距离BC(精确到0.1m).2Copyright2004-2009版权所有盗版必究2DEADBCAB5.解:在Rt△ADE中,DE=3∠DAE=45°,∴sin∠DAE=∴AD=6.又∵AD=AB,在Rt△ABC中,sin∠BAC=∴BC=AB·sin∠BAC=6·sin65°≈5.4.答:点B到地面的垂直距离BC约为5.4米.,,,Copyright2004-2009版权所有盗版必究6.如图,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,现要在C点上方2m处加固另一条钢缆ED,那么EB的高为多少米?(结果保留三个有效数字)6.解:在Rt△BCD中,∠BDC=40°,DB=5m,∵tan∠BDC=BCDB∴BC=DB·tan∠BDC=5×tan40°≈4.195.∴EB=BC+CE=4.195+2≈6.20.答:略.,Copyright2004-2009版权所有盗版必究7.如图,在电线杆上的C处引位线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆C处的仰角为30°,已知测角仪AB高为1.5米,求拉线CE的长.(结果保留根号)Copyright2004-2009版权所有盗版必究7.解:过点A作AH⊥CD,垂足为H.由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,tan∠CAH=CHAH333,∴CH=AH·tan∠CAH=6tan30°=6×=2CDCE在Rt△CDE中,∵∠CED=60°,sin∠CED=231.5sin6032CD∴CE=3=(4+)(米).3∵DH=1.5,∴CD=2+1.5.答:拉线CE的长为(4+3)米.Copyright2004-2009版权所有盗版必究8.已知:如图,在山脚的C处测得山顶A的仰角为45°,沿着坡度为30°的斜坡前进400米到D处(即∠DCB=30°,CD=400米),测得A的仰角为60°,求山的高度AB.9.如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡的树影BC的长为7m,求树高.(精确到0.1m)Copyright2004-2009版权所有盗版必究在矩形DEBF中,BE=DF=200米,在Rt△ACB中,∠ACB=45°,∴AB=BC,即8.解:如图,作DE⊥AB于E,作DF⊥BC于F,在Rt△CDF中∠DCF=30°,CD=400米,∴DF=CD·sin30°=×400=200(米).1232CF=CD·cos30°=×400=200(米).3+x.x+200=20033∴x=200,∴AB=AE+BE=(200+200)米.在Rt△ADE中,∠ADE=60°,设DE=x米,∴AE=tan60°·x=3x(米).3Copyright2004-2009版权所有盗版必究∵∠BCD=15°,∴∠ACD=50°,在Rt△CDB中,CD=7×cos15°,BD=7×sin15°.在Rt△CDA中,AD=CD×tan50°=7×cos15°×tan50°.∴AB=AD-BD=(7×cos15°×tan50°-7×sin15°)=7(cos15°×tan50°-sin15°)≈6.2(m).答:树高约为6.2m.9.解:如图,过点C作水平线与AB的延长线交于点D,则AD⊥CD.Copyright2004-2009版权所有盗版必究这节课你有哪些收获?你能否用所学的知识去解决一些实际问题吗?Copyright2004-2009版权所有盗版必究题型5综合与创新1.小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图1,出发时,在B点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为_____千米.(参考数据:3≈1.732,结果保留两位有效数字)1.8Copyright2004-2009版权所有盗版必究2.先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x轴、y轴上(如图2),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图3),若AB=4,BC=3,则图(2)和图(3)中点B的坐标为___,点C的坐标为____.3答案:图(2)中:B(4,0),图(3)中:B(2,2);433334,22图(2)中:C(4,3),图(3
本文标题:数学:第25章解直角三角形复习课件(华东师大版九年级上)[1]
链接地址:https://www.777doc.com/doc-6283488 .html