您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 半导体集成电路复习题及答案
第8章动态逻辑电路填空题1、对于一般的动态逻辑电路,逻辑部分由输出低电平的网组成,输出信号与电源之间插入了栅控制极为时钟信号的,逻辑网与地之间插入了栅控制极为时钟信号的。【答案:NMOS,PMOS,NOMS】2、对于一个级联的多米诺逻辑电路,在评估阶段:对PDN网只允许有跳变,对PUN网只允许有跳变,PDN与PDN相连或PUN与PUN相连时中间应接入。【答案:】解答题1、从逻辑功能,电路规模,速度3方面分析下面2电路的相同点和不同点。从而说明CMOS动态组合逻辑电路的特点。【答案:】图A是CMOS静态逻辑电路。图B是CMOS动态逻辑电路。2电路完成的均是NAND的逻辑功能。图B的逻辑部分电路使用了2个MOS管,图A使用了4个MOS管,由此可以看出动态组合逻辑电路的规模为静态电路的一半。图B的逻辑功能部分全部使用NMOS管,图A即使用NMOS也使用PMOS,由于NMOS的速度高于PMOS,说明动态组合逻辑电路的速度高于静态电路。2、分析下面的电路,指出它完成的逻辑功能,说明它和一般动态组合逻辑电路的不同,说明其特点。【答案:】该电路可以完成OUT=AB的与逻辑。与一般动态组合逻辑电路相比,它增加了一个MOS管Mkp,这个MOS管起到了电荷保持电路的作用,解决了一般动态组合逻辑电路存在的电荷泄漏的问题。3、分析下列电路的工作原理,画出输出端OUT的波形。【答案:】答案:4、结合下面电路,说明动态组合逻辑电路的工作原理。【答案:】动态组合逻辑电路由输出信号与电源之间插入的时钟信号PMOS,NMOS逻辑网和逻辑网与地之间插入的时钟信号NMOS组成。当时钟信号为低电平时,PMOS导通,OUT被拉置高电平。此时电路处于预充电阶段。当时钟信号为低电平时,PMOS截至,电路与VDD的直接通路被切断。这时NOMS导通,当逻辑网处于特定逻辑时,电路输出OUT被接到地,输出低电平。否则,输出OUT仍保持原状态高电平不变。例如此电路,NMOS网构成逻辑网中A与C,或B与C同时导通时,可以构成输出OUT到地的通路,将输出置为低电平。第7章传输门逻辑填空题1、写出传输门电路主要的三种类型和他们的缺点:(1),缺点:;(2),缺点:;(3),缺点:。【答案:NMOS传输门,不能正确传输高电平,PMOS传输门,不能正确传输低电平,CMOS传输门,电路规模较大。】2、传输门逻辑电路的振幅会由于减小,信号的也较复杂,在多段接续时,一般要插入。【答案:阈值损失,传输延迟,反相器。】3、一般的说,传输门逻辑电路适合逻辑的电路。比如常用的和。【答案:异或,加法器,多路选择器】解答题1、分析下面传输门电路的逻辑功能,并说明方块标明的MOS管的作用。【答案:】根据真值表可知,电路实现的是OUT=AB的与门逻辑,方块标明的MOS管起到了电荷保持电路的功能。2、根据下面的电路回答问题:分析电路,说明电路的B区域完成的是什么功能,设计该部分电路是为了解决NMOS传输门电路的什么问题?【答案:】当传输高电平时,节点n1电位升高,当电位大于反向器IV1的逻辑阈值时,反向器输出低电平,此低电平加在P1管上,P1管导通,n1的电位可以上升到VDD。当传输低电平时,节点n1电位较低,当电位小于反向器IV1的逻辑阈值时,反向器输出高电平,此高电平加在P1管上,P1管截止,n1的电位保持传输来的低电平。说明B部分电路具有电荷保持电路的功能。设计该部分电路是为了解决NMOS传输门电路由于阈值电压不能正确传输高电平的问题。3、根据下面的电路回答问题。已知电路B点的输入电压为2.5V,C点的输入电压为0V。当A点的输入电压如图a时,画出X点和OUT点的波形,并以此说明NMOS和PMOS传输门的特点。【答案:】由此可以看出,NMOS传输门电路不能正确传输高电平,PMOS传输门电路不能正确传输低电平。4、写出逻辑表达式C=AB的真值表,并根据真值表画出基于传输门的电路原理图。【答案:】第6章CMOS静态逻辑门解答题1、画出F=A⊕B的CMOS组合逻辑门电路【答案:】2、用CMOS组合逻辑实现全加器电路【答案:】全加器的求和输出Sum和进位信号Carry表示为三个输入信号A、B、C的函数:Sum=A⊕B⊕C=Carry(A+B+C)+ABCCarry=(A+B)C+AB3、画出F=的CMOS组合逻辑门电路,并计算该复合逻辑门的驱动能力【答案:】4、简述CMOS静态逻辑门功耗的构成【答案:】CMOS静态逻辑门的功耗包括静态功耗和动态功耗。静态功耗几乎为0。但对于深亚微米器件,存在泄漏电流引起的功耗,此泄漏电流包括栅极漏电流、亚阈值漏电流及漏极扩散结漏电流。动态功耗包括短路电流功耗,即切换电源时地线间的短路电流功耗和瞬态功耗,即电容充放电引起的功耗两部分。5、降低电路的功耗有哪些方法【答案:】电路的功耗主要由动态功耗决定,而动态功耗取决于负载电容、电源电压和时钟频率,所以减少负载电容,降低电源电压,降低开关活动性是有效降低电路功耗的方法。第5章MOS反相器解答题1、请给出NMOS晶体管的阈值电压公式,并解释各项的物理含义及其对阈值大小的影响(即各项在不同情况下是提高阈值还是降低阈值)。【答案:】2、什么是器件的亚阈值特性,对器件有什么影响【答案:】器件的亚阈值特性是指在分析MOSFET时,当VgsVth时MOS器件仍然有一个弱的反型层存在,漏源电流Id并非是无限小,而是与Vgs呈现指数关系,这种效应称作亚阈值效应。影响:亚阈值导电会导致较大的功率损耗,在大型电路中,如内存中,其信息能量损耗可能使存储信息改变,使电路不能正常工作。3、MOS晶体管的短沟道效应是指什么,其对晶体管有什么影响【答案:】短沟道效应是指:当MOS晶体管的沟道长度变短到可以与源漏的耗尽层宽度相比拟时,发生短沟道效应,栅下耗尽区电荷不再完全受栅控制,其中有一部分受源、漏控制,产生耗尽区电荷共享,并且随着沟道长度的减小,受栅控制的耗尽区电荷不断减少的现象影响:由于受栅控制的耗尽区电荷不断减少,只需要较少的栅电荷就可以达到反型,使阈值电压降低;沟道变短使得器件很容易发生载流子速度饱和效应。4、请以PMOS晶体管为例解释什么是衬偏效应,并解释其对PMOS晶体管阈值电压和漏源电流的影响【答案:】对于PMOS晶体管,通常情况下衬底和源极都接最高电位,衬底偏压,此时不存在衬偏效应。而当PMOS中因各种应用使得源端电位达不到最高电位时,衬底偏压0,源与衬底的PN结反偏,耗尽层电荷增加,要维持原来的导电水平,必须使阈值电压(绝对值)提高,即产生衬偏效应。影响:使得PMOS阈值电压向负方向变大,在同样的栅源电压和漏源电压下其漏源电流减小。5、什么是沟道长度调制效应,对器件有什么影响【答案:】MOS晶体管存在速度饱和效应。器件工作时,当漏源电压增大时,实际的反型层沟道长度逐渐减小,即沟道长度是漏源电压的函数,这一效应称为“沟道长度调制效应”。影响:当漏源电压增加时,速度饱和点在从漏端向源端移动,使得漏源电流随漏源电压增加而增加,即饱和区D和S之间电流源非理想。6、为什么MOS晶体管会存在饱和区和非饱和区之分(不考虑沟道调制效应)【答案:】晶体管开通后,其漏源电流随着漏源电压而变化。当漏源电压很小时,随着漏源电压的值的增大,沟道内电场强度增加,电流随之增大,呈现非饱和特性;而当漏源电压超过一定值时,由于载流子速度饱和(短沟道)或者沟道夹断(长沟道),其漏源电流基本不随漏源电压发生变化,产生饱和特性。7、考虑一个电阻负载反相器电路:VDD=5V,KN`=20uA/V2,VT0=0.8V,RL=200KΩ,W/L=2。计算VTC曲线上的临界电压值(VOL、VOH、VIL、VIH)及电路的噪声容限,并评价该直流反相器的设计质量。【答案:】8、设计一个VOL=0.6V的电阻负载反相器,增强型驱动晶体管VT0=1V,VDD=5V1)求VIL和VIH2)求噪声容限VNML和VNMH【答案:】9、采用MOSFET作为nMOS反相器的负载器件有哪些优点【答案:】采用负载电阻会占用大量的芯片面积,而晶体管占用的硅片面积通常比负载电阻小,并且有源负载反相器电路比无源负载反相器有更好的整体性能。10、什么是CMOS电路?简述CMOS反相器的工作原理及特点【答案:】CMOS电路是指由NMOS和PMOS所组成的互补型电路。对于CMOS反相器,Vin=0时,NMOS截止,PMOS导通,Vout=VOH=VDD;Vin=VDD时,NMOS导通,PMOS截止,Vout=VOL=0。高低输出电平理想,与两管无关。从对CMOS反相器工作原理的分析可以看出,在输入为0或VDD时,NMOS和PMOS总是一个导通,一个截止,没有从VDD到VSS的直流通路,也没有电流流入栅极,因而其静态电流和功耗几乎为0。这也是CMOS电路最大的特点。第4章TTL电路解答题1、名词解释电压传输特性开门/关门电平逻辑摆幅过渡区宽度输入短路电流输入漏电流静态功耗【答案:】电压传输特性:指电路的输出电压VO随输入电压Vi变化而变化的性质或关系(可用曲线表示,与晶体管电压传输特性相似)。开门/关门电平:开门电平VIHmin-为保证输出为额定低电平时的最小输入高电平(VON);关门电平VILmax-为保证输出为额定高电平时的最大输入低电平(VOFF)。逻辑摆幅:-输出电平的最大变化区间,VL=VOH-VOL。过渡区宽度:输出不确定区域(非静态区域)宽度,VW=VIHmin-VILmax。输入短路电流IIL-指电路被测输入端接地,而其它输入端开路时,流过接地输入端的电流。输入漏电流(拉电流,高电平输入电流,输入交叉漏电流)IIH-指电路被测输入端接高电平,而其它输入端接地时,流过接高电平输入端的电流。静态功耗-指某稳定状态下消耗的功率,是电源电压与电源电流之乘积。电路有两个稳态,则有导通功耗和截止功耗,电路静态功耗取两者平均值,称为平均静态功耗。2、分析四管标准TTL与非门(稳态时)各管的工作状态【答案:】当输入端的信号,有任何一个低电平时:Q1饱和区Q2截至区Q3饱和区Q4截至区当输入端的信号全部为高电平时:Q1反向区Q2饱和区Q3饱和区Q4饱和区4、两管与非门有哪些缺点,四管及五管与非门的结构相对于两管与非门在那些地方做了改善,并分析改善部分是如何工作的。四管和五管与非门对静态和动态有那些方面的改进【答案:】两管与非门:输出高电平低,瞬时特性差。四管与非门:输出采用图腾柱结构Q3--D,由于D是多子器件,他会使Tplh明显下降。D还起到了点评位移作用,提高了输出电平。五管与非门:达林顿结构作为输出级,Q4也起到点评位移作用,达林顿电流增益大,输出电阻小,提高电路速度和高电平负载能力。四管和五管在瞬态中都是通过大电流减少Tplh.静态中提高了负载能力和输出电平。5、相对于五管与非门六管与非门的结构在那些部分作了改善,分析改进部分是如何工作的【答案:】六管单元用有源泄放回路RB-RC-Q6代替了R3由于RB的存在,使Q6比Q5晚导通,所以Q2发射基的电流全部流入Q5的基极,是他们几乎同时导通,改善了传输特性的矩形性,提高了抗干扰能力。当Q5饱和后Q6将会替它分流,限制了Q5的饱和度提高了电路速度。在截至时Q6只能通过电阻复合掉存储电荷,Q6比Q5晚截至,所以Q5快速退出饱和区。6、为什么TTL与非门不能直接并联【答案:】当电路直接并联后,所有高电平的输出电流全部灌入输出低电平的管子,可能会使输出低电平的管子烧坏。并会使数出低电平抬高,容易造成逻辑混乱。7、OC门在结构上作了什么改进,它为什么不会出现TTL与非门并联的问题【答案:】去掉TTL门的高电平的驱动级,oc门输出端用导线连接起来,接到一个公共的上拉电阻上,实施线与,此时就不会出此案大电流灌入,Q5不会使输出低电平上升造成逻辑混乱。第1章集成电路的基本制造工艺解答题1、四层三结的结构的双极型晶体管中隐埋层的作用【答案:】减小集电极串联电阻,减小寄生PNP管的影响2、在制作晶体管的时候,衬底材料电阻率的选取对器件有何影响【答案:】电阻率过大将增大集电极串联
本文标题:半导体集成电路复习题及答案
链接地址:https://www.777doc.com/doc-6295951 .html