您好,欢迎访问三七文档
-1-模式识别学习模式识别系统一个典型的模式识别系统如图1所示,由数据获取、预处理、特征提取、分类决策及分类器设计五部分组成。一般分为上下两部分:上部分完成未知类别模式的分类;下半部分属于分类器设计的训练过程,利用样品进行训练,确定分类器的具体参数,完成分类器的设计。而分类决策在识别过程中起作用,对待识别的样品进行分类决策。模式识别系统组成单元功能如下。(1)数据获取用计算机可以运算的符号来表示所研究的对象,一般获取的数据类型有一下几种。①二维图像:文字、指纹、地图、照片等。②一维波形:脑电图、心电图、季节震动波形等。③物理参量和逻辑值:体温、化验数据、参量正常与否的描述。(2)预处理对输入测量仪器或其他因素所造成的退化现象进行复原、去噪声,提取有用信息。(3)特征提取和选择对原始数据进行变换,得到最能反映分类本质的特征。将维数较高的测量空间(原始数据组成的空间)转变为维数较低的特征空间(分类识别赖以进行的空间)。(4)分类决策数据获取预处理特征提取分类决策分类结果未知类别模式的分类图1模式识别系统及识别过程训练样本输入预处理特征选择确定判别函数改进判别函数分类器设计误差检验-2-在特征空间中用模式识别方法把被识别对象归为某一类别。(5)分类器设计基本做法是在样品训练基础上确定判别函数,改进判别函数和误差检验。模式识别的方法1.统计模式识别统计模式识别是对模式的统计分类方法,即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。识别是从模式中提取一组特性的度量,构成特征向量来表示,然后通过划分特征空间的方式进行分类。利用模式与子模式分层结构的树状信息所完成的模式识别工作,就是结构模式识别或句法模式识别。统计模式识别主要是利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。在统计模式识别中,贝叶斯决策规则从理论上解决了分类器的设计问题,但贝叶斯方法计算条件概率函数是非常困难的,因为在实际中条件概率一般是未知的,必须从数据样本中估计出来,然而在估算条件概率的时候,受制于样本的数量。样本太少,不能够表征要研究的某类问题,样本太多,给数据采集会造成一定的麻烦,而且计算量也增大了。为此人们提出了各种解决方法:1.1最大似然估计和贝叶斯估计这两种方法的前提条件是各类别的条件概率密度的形式已知,而参数类未知。在此情况下,对现有的样本进行参数估计。参数估计在统计学中是很经典的算法,而最大似然估计和贝叶斯估计也是参数估计中常用的方法。最大似然估计是把待估参数看作确定性的量,只是其取值未知,最大似然估计方法所寻找的是能最好解释训练样本的那个参数值;贝叶斯估计把待估参数看作是符合某种先验概率分布的随机变量,而训练样本的作用就是把先验概率转化为后验概率[6]。实际生活中,用的更多的还是最大似然估计,因为此方法更容易实现,而且样本数据充足的情况下,得到的分类器效果比较好。1.2监督参数统计法1)KNN法及其衍生法KNN法也成为K最近领域法,是模式识别的标准算法之一。其基本原理是先将已经分好类别的训练样本点记入到多维空间,然后将待分类的未知样本也记入空间。考察未知样本的K个近邻,弱近邻中某一个类样本最多,则可以将未知样本也判为该类。2)Fisher判别分析法-3-Fisher判别分析法的基本原理是将多维空间样本点分布的图像投影到二维或者一维,投影方向选择的原则是使两类样本点尽可能分开。求投影方向得到两类点分开的最佳方向也次方向,由这两个方向张成二维平面,可使投影形成二维分类图;垂直于分界线的法线代表使样本向一类或者二类转化的方向。此外统计模式识别还有判别函数法(包括线性判别函数法和非线性判别函数法)、特征分析法、主因子分析法等。统计模式识别的优点:由于其基本方法是基于对模式的统计,统计的方法及处理等由于发展的早,比较成熟,在处理中能考虑干扰、噪声等影响,识别模式基元的能力强。统计模式识别的缺点:由于统计的模式其数量要求大,对结构复杂的模式抽取特征困难。若数据量小则不能反映模式的结构特征,难以归纳模式的性质,难以从整体角度考虑识别问题。2.结构模式识别对于较复杂的模式,对其描述需要很多数值特征,从而增加了复杂度。结构模式识别通过采用一些比较简单的子模式组成多级结构来描述一个复杂的模式。基本思路是先将模式分为若干个子模式,子模式再分解成简单的子模式,然后子模式再分解,直到根据研究的需要不再需要细分的程度。最后一级最简单的子模式称为模式基元。结构模式识别的优点:由于采用模式分为若干子模式,子模式再分解到基元,这样其识别方便,可以从简单的基元开始,逐步推理,由简至繁。它能反映模式的结构特性,对模式的性质能很好的描述出来,对图像畸变的抗干扰能力较强。结构模式识别的缺点:当存在干扰及噪声时,对基元的影响很大,抽取基元困难,且容易将噪声一块儿抽取,造成失误。3.模糊模式识别模糊模式识别是以模糊理论和模糊集合数学为支撑的一种识别方法。模糊集合是指没有明确的边界的集合。例如:“水很烫”,“枇杷很大”,“某学生考试成绩一般”,“这件衣服很贵”等,这些都是模糊集合。但是虽然模糊,缺可以通过一些方法表征出来,因此也可以说这个是清晰的。模糊集合理论是通过隶属度来描述元素的集合程度,主要用于解决不确定性问题。在平常的事物中,由于噪声、扰动、测量误差等因素影响,使得不同模式类的边界不明确,然而这些不明确有模糊集合的性质,因此在模式识别中可以把模式类当做模糊集合,利用模糊理论的方法对模式进行分类,从而解决问题。模糊模式识别的优点:由于采用了模糊推理的方法,用隶属函数作为样本和模板的度量,故能反映模式的整体特征,针对样品中的干扰和畸变,有很强的剔-4-除能力。模糊模式识别的缺点:模糊规则往往是根据经验的来的,准确合理的隶属函数往往难以建立,从而也限制了它的应用。4.神经网络模式识别人工神经网络是由大量简单的处理单元广泛互连而成的复杂网络,起源于对生物神经系统的研究。它将若干处理单元(即神经元)通过一定的互连模型连结成一个网络,这个网络通过一定的机制(如BP网络)可以模仿人的神经系统的动作过程,以达到识别分类的目的。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。神经网络侧重于模拟和实现人认知过程中的感知觉过程、形象思维、分布式记忆、自学习和自组织过程,与符号处理是一种互补的关系。但神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习的能力,特别适用于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题[8]。神经网络模式识别的优点:由于其是由模式的基元互连而成,能够反映局部信息,可以处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题。针对样品有较大的缺损或畸变,它能很好的纠正。神经网络模式识别的缺点:模型在不断丰富与完善,目前能识别的程式类还不够多。5.多分类器融合多分类器融合,也称为多分类器集成,就是融合多个分类器提供的信息,得到更加精确的分类结果。多分类器融合常见的结构有三种:并行结构、串行结构、串并行结构。输入分类器1输出集成输出分类器3分类器2分类器N图3多分类器集成的串并行结构分类器1分类器N输出入集成分类器2分类器3输入图2多分类器集成的并行结构-5-图2所示的并行结构中,各分类器是独立进行设计的,他们之间没有关联。图3所示的串并行结构是串行结构中某一级的分类器由多个并行结构的分类器组成,从而有串行结构和并行结构的特点。图4所示的串行结构中,前一级分类器为后一级分类器提供信息,它们之间有一定的关联。分类器1分类器2分类器N输入输出输出输出图4多分类器集成的串行结构
本文标题:模式识别报告
链接地址:https://www.777doc.com/doc-6312802 .html