您好,欢迎访问三七文档
学.科.网点斜式00()yykxx斜率和一点坐标斜截式ykxb斜率k和截距b两点坐标两点式点斜式两个截距截距式1xyab112121yyxxyyxx00()yykxx名称几何条件方程适用范围bkxy)(00xxkyy1byax复习回顾点P(x0,y0)和斜率k点斜式斜截式两点式截距式斜率k,y轴上的纵截距b在x轴上的截距a在y轴上的截距bP1(x1,y1),P2(x2,y2)有斜率的直线有斜率的直线不垂直于x、y轴的直线不垂直于x、y轴的直线,不过原点的直线121121xxxxyyyy上述四种直线方程,能否写成如下统一形式??x+?y+?=0)(11xxkyybkxy121121xxxxyyyy1byax0)1(11kxyykx0)1(bykx0)()()()(1212112112xxyyyxyxxxyy0)(abaybx上述四式都可以写成直线方程的一般形式:Ax+By+C=0,A、B不同时为0。①当B≠0时②当B=0时lxyOCA方程可化为BCxBAyBABC这是直线的斜截式方程,它表示斜率是在y轴上的截距是的直线。表示垂直于x轴的一条直线)0A(CxA方程可化为问:所有的直线都可以用二元一次方程表示?0AxByC一、直线的一般式方程:关于x,y的二元一次方程(其中A、B不同时为0)0CByAx叫做直线的一般式方程,简称一般式。在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线:(1)平行于x轴;(1)A=0,B≠0,C≠0二、二元一次方程的系数对直线的位置的影响:lyox在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线:(1)平行于x轴;(2)平行于y轴;二、二元一次方程的系数对直线的位置的影响:lyox(2)B=0,A≠0,C≠0yox在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线:(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;二、二元一次方程的系数对直线的位置的影响:(3)A=0,B≠0,C=0lyox在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线:(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;(4)与y轴重合;二、二元一次方程的系数对直线的位置的影响:l(4)B=0,A≠0,C=0yox在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线:(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;(4)与y轴重合;(5)过原点;二、二元一次方程的系数对直线的位置的影响:l(5)C=0,A、B不同时为0在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线为:(1)平行于x轴(2)平行于y轴(3)与x轴重合(4)与y轴重合0,0,0ABC0,0,0ABC0,0,0ABC0,0,0ABC例1:已知直线经过点A(6,-4),斜率为,求直线的点斜式、一般式和截距式方程。解:经过点A(6,-4)并且斜率等于的直线方程的点斜式方程是143yx化成一般式,得注意:对于直线方程的一般式,一般作如下约定:x的系数为正,x,y的系数及常数项一般不出现分数,一般按含x项,含y项、常数项顺序排列.截距式方程为:3434)6(344xy01234yx例2:把直线L的方程x–2y+6=0化成斜截式,求出直线L的斜率和它在x轴与y轴上的截距,并画图。解:将直线的一般式方程化成斜截式321xy因此,直线L的斜率,它在y轴上的截距是3.令y=0,可得x=-6即直线L在x轴上的截距是-6.xyo3-621k2.设A、B是x轴上的两点,点P的横坐标为2,且│PA│=│PB│,若直线PA的方程为x-y+1=0,则直线PB的方程是()A.2y-x-4=0B.2x-y-1=0C.x+y-5=0D.2x+y-7=01.直线Ax+By+C=0通过第一、二、三象限,则()(A)A·B0,A·C0(B)A·B0,A·C0(C)A·B0,A·C0(D)A·B0,A·C0练习直线方程的一般式应用[解](1)法一:由l1:2x+(m+1)y+4=0.l2:mx+3y-2=0.①当m=0时,显然l1与l2不平行.②当m≠0时,l1∥l2,需2m=m+13≠4-2.解得m=2或m=-3.∴m的值为2或-3.[例3](1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值;(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?法二:令2×3=m(m+1),解得m=-3或m=2.当m=-3时,l1:x-y+2=0,l2:3x-3y+2=0,显然l1与l2不重合,∴l1∥l2.同理当m=2时,l1:2x+3y+4=0,l2:2x+3y-2=0,l1与l2不重合,l1∥l2,∴m的值为2或-3.(2)法一:由题意,直线l1⊥l2,①若1-a=0,即a=1时,直线l1:3x-1=0与直线l2:5y+2=0,显然垂直.②若2a+3=0,即a=-32时,直线l1:x+5y-2=0与直线l2:5x-4=0不垂直.③若1-a≠0,且2a+3≠0,则直线l1,l2的斜率k1,k2都存在,k1=-a+21-a,k2=-a-12a+3,当l1⊥l2时,k1·k2=-1,即(-a+21-a)·(-a-12a+3)=-1,所以a=-1.综上可知,当a=1或a=-1时,直线l1⊥l2.法二:由直线l1⊥l2,所以(a+2)(a-1)+(1-a)(2a+3)=0,解得a=±1.将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.()()22: 1//;2llllllll++=++=^121111222211AxByC0AxByC0补充设直线、的方程分别为:,:,在什么条件下有()2122112211//00llABABBCBC?=-?1且()212122AABB0ll^?=12.与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0,(m≠C),与直线Ax+By+C=0垂直的直线方程可设为Bx-Ay+m=0.例3:已知直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程:(1)过点(-1,3),且与l平行;(2)过点(-1,3),且与l垂直.[活学活用]3.(1)求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程;(2)求经过点A(2,1)且与直线2x+y-10=0垂直的直线l的方程.解:(1)法一:设直线l的斜率为k,∵l与直线3x+4y+1=0平行,∴k=-34.又∵l经过点(1,2),可得所求直线方程为y-2=-34(x-1),即3x+4y-11=0.法二:设与直线3x+4y+1=0平行的直线l的方程为3x+4y+m=0.∵l经过点(1,2),∴3×1+4×2+m=0,解得m=-11.∴所求直线方程为3x+4y-11=0.(2)法一:设直线l的斜率为k.∵直线l与直线2x+y-10=0垂直,∴k·(-2)=-1,∴k=12.又∵l经过点A(2,1),∴所求直线l的方程为y-1=12(x-2),即x-2y=0.法二:设与直线2x+y-10=0垂直的直线方程为x-2y+m=0.∵直线l经过点A(2,1),∴2-2×1+m=0,∴m=0.∴所求直线l的方程为x-2y=0.
本文标题:直线的一般式方程
链接地址:https://www.777doc.com/doc-6322217 .html