您好,欢迎访问三七文档
11.一般地,______________叫做幂函数,其中x是自变量,α是常数.2.在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=12x,y=x-1的图象.3.结合2中图象,填空.(1)所有的幂函数图象都过点________,在(0,+∞)上都有定义.(2)若α0时,幂函数图象过点____________,且在第一象限内______;当0α1时,图象上凸,当α1时,图象______.(3)若α0,则幂函数图象过点________,并且在第一象限内单调______,在第一象限内,当x从+∞趋向于原点时,函数在y轴右方无限地逼近于y轴,当x趋于+∞时,图象在x轴上方无限逼近x轴.(4)当α为奇数时,幂函数图象关于______对称;当α为偶数时,幂函数图象关于______对称.(5)幂函数在第____象限无图象.一、选择题1.下列函数中不是幂函数的是()A.y=xB.y=x3C.y=2xD.y=x-12.幂函数f(x)的图象过点(4,12),那么f(8)的值为()A.24B.64C.22D.1643.下列是y=23x的图象的是()24.图中曲线是幂函数y=xn在第一象限的图象,已知n取±2,±12四个值,则相应于曲线C1,C2,C3,C4的n依次为()A.-2,-12,12,2B.2,12,-12,-2C.-12,-2,2,12D.2,12,-2,-125.设a=2535,b=3525,c=2525,则a,b,c的大小关系是()A.acbB.abcC.cabD.bca6.函数f(x)=xα,x∈(-1,0)∪(0,1),若不等式f(x)|x|成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是()A.0B.2C.3D.47.给出以下结论:①当α=0时,函数y=xα的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大;④幂函数的图象不可能在第四象限,但可能在第二象限.则正确结论的序号为________.8.函数y=12x+x-1的定义域是____________.9.已知函数y=x-2m-3的图象过原点,则实数m的取值范围是____________________.10.比较1.121、121.4、131.1的大小,并说明理由.11.如图,幂函数y=x3m-7(m∈N)的图象关于y轴对称,且与x轴、y轴均无交点,求此函数的解析式.3能力提升12.已知函数f(x)=(m2+2m)·21mmx,m为何值时,函数f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.13.点(2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上,问当x为何值时,有:(1)f(x)g(x);(2)f(x)=g(x);(3)f(x)g(x).1.幂函数在第一象限内指数变化规律:在第一象限内直线x=1的右侧,图象从上到下,相应的指数由大变小;在直线x=1的左侧,图象从下到上,相应的指数由大变小.2.求幂函数的定义域时要看指数的正负和指数nm中的m是否为偶数;判断幂函数的奇偶性时要看指数nm中的m、n是奇数还是偶数.y=xα,当α=nm(m、n∈N*,m、n互质)时,有:nmy=nmx的奇偶性定义域奇数偶数非奇非偶函数[0,+∞)偶数奇数偶函数(-∞,+∞)奇数奇数奇函数(-∞,+∞)3.幂函数y=nmx的单调性,在(0,+∞)上,nm0时为增函数,nm0时为减函数.
本文标题:幂函数经典例题讲义
链接地址:https://www.777doc.com/doc-6325242 .html