您好,欢迎访问三七文档
1.(12江西T16)已知数列na的前n项和21()2nSnknkΝ,且nS的最大值为8.(1)确定常数k,求na;(2)求数列922nna的前n项和nT.【测量目标】错位相减法求和.【难易程度】中等【试题解析】(1)当nkΝ时,212nSnkn取最大值,即22211822kkk,故4k,从而19(2)2nnnaSSnn…,(步骤1)又1172aS,92nan.(步骤2)(2)19222nnnnanb,12nTbb…223122nb…21122nnnn,212111112221...44222222nnnnnnnnnnnTTT.(步骤3)2.(11四川T20)设d为非零实数,122111(C2C(1)CC()nnnnnnnnnaddndndnn*N(1)写出123,,aaa并判断{}na是否为等比数列.若是,给出证明;若不是,说明理由;(II)设()nnbndan*N,求数列{}nb的前n项和nS.【测量目标】等比数列的通项,错位相减法求和,根据数列的前n项求数列的通项公式.【难易程度】较难.【试题解析】(1)1223(1)(1)adaddadd012231111CCCC(1)(1)1nnnnnnnnnnnnaddddddaddada因为d为常数,所以{}na是以d为首项,1d为公比的等比数列.(步骤1)(2)212021222120121(1)(1)2(1)3(1)(1)[(1)2(1)3(1)(1)]nnnnnbnddSddddddnddddddnd(1)2123(1)[(1)2(1)3(1)(1)]nndSddddnd(2)(步骤2)(2)(1)2221(1(1))[(1)]()(1)1(1)nnnnddSddndddnddd1(1)(1)nnSdnd(步骤3)3.(10宁夏T17)设数列na满足21112,32nnnaaa,(Ⅰ)求数列na的通项公式;(Ⅱ)令nnbna,求数列的前n项和nS【测量目标】错位相减法求和.【难易程度】中等【试题解析】(Ⅰ)由已知,当n≥1时,111211[()()()]nnnnnaaaaaaaa21233(222)2nn2(1)12n.(步骤1)而12,a所以数列{na}的通项公式为212nna.(步骤2)(Ⅱ)由212nnnbnan知35211222322nnSn①(步骤3)从而23572121222322nnSn②(步骤4)①-②得2352121(12)22222nnnSn.即211[(31)22]9nnSn.(步骤5)4.(10四川T21)已知数列{an}满足a1=0,a2=2,且对任意m、n∈*N都有a2m-1+a2n-1=2am+n-1+2(m-n)2(Ⅰ)求a3,a5;(Ⅱ)设bn=a2n+1-a2n-1(n∈*N),证明:{bn}是等差数列;(Ⅲ)设cn=(an+1-an)qn-1(q≠0,n∈*N),求数列{cn}的前n项和Sn.【测量目标】等差数列的性质,错位相减法求和,等差数列的通项.【难易程度】较难【试题解析】(Ⅰ)由题意,令.6221,2123aaanm可得(步骤1)再令.20821,3135aaanm可得(步骤2)(Ⅱ)2121212(1)12(1)12121,(2)28[]()8nnnnnnnnnmaaaaaaaN*当时由已知以代替可得于是即(步骤3).81nnbb所以,数列.8的等差数列是公差为nb(步骤4)(Ⅲ)由(Ⅰ)、(Ⅱ)的解答可知1316,8.nbbaa是首项公差为的等差数列则82nbn.即212182,nnaan(步骤5)令由已知(令m=1)可得,22111,2nnaaan(步骤6)那么,21211212nnnnaaaan=822122nnn于是,12nncnq(步骤7)当q=1时,24621.nSnnn(步骤8)当1q时,01212462nnSqqqnq.(步骤9)两边同乘q可得1231246212nnnqSqqqnqnq(步骤10)上述两式相减即得1231(1)2(1)2nnnqSqqqqnq=1221nnqnqq=11121nnnqnqq所以112121nnnnnqnqnqSq(步骤11)综上所述,112111211nnnnnnqnqnqnqSqq(步骤12)5.(09全国IT20)在数列{}na中,11111,(1)2nnnnaaan(I)设nnabn,求数列{}nb的通项公式;(II)求数列{}na的前n项和nS.【测量目标】已知递推公式求通项,错位相减法求和.【难易程度】较难【试题解析】(I)由已知有1112nnnaann,即112nnnbb,从而2112bb32212bb…111(2)2nnnbbn…(步骤1)于是121111222nnbb…=112(2)2nn…(步骤2)又11b所以数列{}nb的通项公式:1122nnb(*nN)(步骤3)(II)由(I)知122nnnan,nS=11(2)2nkkkk111(2)2nnkkkkk(步骤4)而1(2)(1)nkknn,又112nkkk是一个典型的错位相减法模型,易得1112422nknkknnS=(1)nn1242nn(步骤5)
本文标题:错位相减法求和
链接地址:https://www.777doc.com/doc-6334898 .html