您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 综合/其它 > 模块化可重构蛇形机器人技术报告
模块化可重构蛇形机器人技术报告***本文转载自《ROBOTDIY——机器人发烧友天地》***模块化可重构蛇形机器人技术报告1.蛇形机器人研究背景仿生学的范围很广,譬如雷达是对蝙蝠超声测距能力的模仿,而机翼使用的防震措施则借鉴了蜓蜻翅膀的结构。仿生机器人运动学是仿生学的一个很重要的发展。人类在智慧上超出动物很多,但在特定环境的适应上就要比动物差很多。虽然人发明了很多的技术弥补了这一不足,但明显可以看到,舰船的灵活性比不上鱼类,飞机的灵活性比不上鸟类甚至昆虫,车辆的地形适应性比不上四条腿的动物。仿生运动的研究可以弥补我们这方面的不足,对社会产生大的经济效益。蛇形机器人的研究可以满足一些行业的需求。蛇形机器人由于其天生的多关节、多自由度,多冗余自由度,可以有多种运动模式,可以满足在复杂环境中搜救、侦查、排除爆炸物等反恐任务;航空航天领域可用其作为行星表面探测器,轨道卫星的柔性手臂;工业上则可应用于多冗余度柔性机械手臂,管道机器人等方面。区别于传统的“基于运动模型的运动控制策略”和“基于行为的运动控制策略”,以行为主义控制模型为基础,本文试图建立从模仿蛇类生物中枢神经系统及关节反射调节系统,实现一种“分布式底层运动控制——高层中枢决策”的控制模型。并且经由独立开发的蛇形机器人样机验证此一模型,在实验中取得了良好的效果,证明本文提出的控制模型没有原则上的错误以及不可克服的应用困难。2.国内外研究情况分析1)目前国内外对蛇形机器人研究综述近几年来,特别是2000年以来,蛇形仿生机器人正在成为全世界新的研究热点。其理由有二:首先,仿生机器人学正在机器人领域占有越来越重要的位置,而由于其自身的典型性,蛇形机器人是仿生领域的热点研究方向;其次,运动机理特殊的蛇形机器人有广阔的应用情景,例如战场上的扫雷,爆破,空间站的柔性机械手臂,通过能力很强的行星地表探测器等;且其模块化结构和高冗余度非常适应于条件非常恶劣而又要求高可靠性的战场、外层空间等环境。国内也已经有单位开展这方面的研究,例如国防科大与中科院沈阳自动化所。2)国内外研究概况a)美国宇航局(NASA)的SnakeBotNASA于1999年开始研究多关节的蛇形机器人,计划在其太空计划中用于行星地表探测以及空间站维护工作。其第一代蛇形机器人如图所示。它采用相邻正交的串联机构,由中央计算机集中控制。该机器人能完成蠕动前进,游动前进,翻越简单障碍物等功能。该蛇形机器人结构简单合理,对目前的蛇形机器人结构产生了很大的影响。b)德国Gavin.HS1-S5德国人Gavin.H从约1997年开始从事蛇形机器人的研究工作,到目前为止共设计并制作了S1,S2,S3,S4,S5五代蛇形机器人,图3为S5。其研究已经达到相当高的水平,特点是:各个关节形状尺寸不同,高度模拟生物蛇;为二维结构,无法完成三维空间运动;依靠从动轮而不是摩擦运动,运动速度很高,主要运动方式为游动。c)德国GMD国家实验室的AiS德国GMD国家实验室也开发出了基于模块式结构和CAN总线的蛇形机器人,其结构为三维关节,每关节有三个电机及六个力矩传感器,六个红外传感器,因此结构相当复杂,直径达20cm左右。其控制方式为上位机总线下位机。目前该机器人具有速度及位置闭环,能翻越简单障碍,具有一定的自主反应能力。d)国防科大RoboSnake这是国内最早报道的蛇形机器人,最初为二维结构,依靠从动轮前进,长约1.5米,重约3Kg。目前发展为三维结构,但是依然保持从动轮。e)中科院沈阳自动化所蛇形机器人同样采用正交串联结构,可以完成蠕动前进、游动前进、滚转等运动。3)研究的热点及主流方向a)运动机理德国研究者BernhardKlaassen和KarlLPaap认为研究基于蛇类生物的多节、多自由度机器人的关键是机器人的自主控制,以及一定结构下机器人体态变化过程中的有效控制问题。日本东京大学的LucJAMMES、YasumasaKYODO等人也有类似研究的报导。显然,这些研究仅仅是对一种运动原理的模拟,没有考虑环境因素,而且由于运动支承轮的存在,此种机器人系统很难适应障碍物众多、凸凹不平的自然环境。为此,日本Ibraki大学的学者进一步研究了蛇类生物的运动机理,利用串联杆系和行波运动,通过相应的结构及电机驱动,研制成仿蛇机器人系统样机,对其运动原理、结构特性、控制算法、数学模型进行了详细论证,试图开发其在上述环境中的应用。Ibraki大学系统工程系的ShugenMA进一步研究了生物蛇行进过程中的肌肉特点,比较了已有的仿蛇机器人运动模型,最后从驱动力、运动效率的角度出发,得出了所谓仿蛇机器人的最佳运动波形、并将进一步开展实际机器人系统的机械构成、实现方面的研究和探讨。由于生物蛇鳞片和关节的数目相当庞大,蛇类生物可以近似看作是一种“没有关节、柔性的”运动体。英国Heriot-Watt大学的G.Robinson和J.B.C.Davies基于生物蛇高度灵活性和机动性,进一步提出了连续机器人的设计思想,并通过不同形式和结构的液压驱动“人工筋”研制出不包含刚性联接和扭转关节的的机器蛇系统,该系统有较好的环境适应性,但也带来了体态控制困难、结构复杂和难以微型化的问题。这些问题只能在液压驱动技术得到发展后逐步解决。综上所述,基本可以认定,现阶段以及近未来,大多数蛇形机器人仍然是基于杆系结构模型。b)控制理论及控制方式在仿生机器人领域,目前大部分研究者专注于实现更高的运动效率,得到更加接近生物的运动,这无疑是仿生机器人的研究方向之一,但是很难指望在一种机械而固定的控制方式下能够得到真正具有生物特性的运动,这方面的研究所作的也只能是根据已知环境来尽可能模拟生物运动,尽可能提高运动效率。但是这样似乎很难超越“非确定性环境适应性”这一门槛,目前已经有一部分研究者正在积极研究自适应运动控制理论,大部分研究者总的原则是试图建立一个普适的运动学模型和一个普适的决策理论,这个运动学模型应该是一个时变的数学模型,包括环境与本身的关系,能够描述时间、环境、自身状况对运动的影响,包含一组针对环境的传感与决策特征值(即决策控制层所需要的)。作为一种典型的控制模式,基于CPG(中枢模式发生器)原理的机器人系统设计利用一个包含多个互抑制神经元的振荡器作为运动模式发生器,利用连接权重矩阵来描述多个振荡器的相位关系,调节运动模式发生器产生的节律信号,以模仿生物的步态产生原理为基础,利用CPG和几个振荡器得到各种步态。同时利用传感器构成对权重矩阵的影响,反映环境和自身的各种参数变化。这一思路比较新颖,且具有一定的普适性,应该是一种很有前途的探索方向。这种方式的缺点在于,其拓扑结构复杂程度随运动的复杂程度成平方关系增加,且达到更好的适应性需要大量的传感器反馈,如何把这些反馈合理地反映到运动权重矩阵中去仍然是个问题,这仍然需要对各种不可预见因素的大量模拟和实践,以得出合理的反馈处理方式。考察国内外已知各仿生机器人研究者的控制方案,基本可以分为以下三种:1)主控计算机中央控制,拓扑结构为星形,采用基于“命令宏”的开环/部分闭环控制。这种方案结构较简单,没有下位机,上位机直接控制电机以及处理传感器反馈,优点是所有关节相互独立,互不影响,但是这种控制律决定了其自适应能力差,容错性差,结构的改变将导致所有动作必须重新设计,中央计算机的瘫痪将造成系统的完全瘫痪。而且要求系统有一个高速、大容量的上位机。典型应用实例有NASA的SnakeBot。2)利用CPG、行为主义控制模型、人工神经网络等分布式控制方案,典型应用如MIT的Brooks的Genghis六足机器人,“Vbug”机器人等。2)既有主控计算机,也有局部控制器,结合以上两种控制方式的优点,这样对主控计算机的依赖大大减小使其的微型化成为可能,可以在很大程度上弥补上述两种控制方式各自的缺点,在需要自主运动和高度的鲁棒性时主要采用方式2,在执行确定任务时采用方式1和2的结合。3.本作品的目的传统的机器人控制策略有两种:基于固定模型的运动控制策略,以及基于行为的运动控制策略。“基于固定模型的运动控制策略”的思想是以中央控制为主,预先建立具体的行为库,再通过传感器的反馈来改变各种具体的行为以获得某种程度的环境适应能力。从控制模型上来讲,这类策略都试图建立单一的FSM(finitestatemachine,有穷状态机)以模拟生物高度复杂、且原理上尚未完全探明的运动决策过程,这就决定了这类模型的实际性能。由于状态有限且预设规范有限,这类模型只可能在已知环境中行动,只可能具有相当有限的自适应能力。“基于行为的运动控制策略”一般不包含主控计算机,系统的运动完全由各个关节分布的局部控制器的相互耦合来完成。低等生物常常是依靠各神经节的相互作用来完成运动,这是一种不经过思考的智能:基于这种“无思考智能”的控制系统具有实时性和自组织的特点,在高度非确定性的场合具有一定优势。“基于运动模型的运动控制策略”的思想是以中央控制为主,预先建立具体的行为库,再通过传感器的反馈来改变各种具体的行为以获得某种程度的环境适应能力。某些这类策略还具有根据反馈修正原有运动运动模型的能力,比如采用遗传算法的机器人控制策略。这类策略的优点是设计较为简单,从控制模型上来讲,这类策略都试图建立单一的FSM(finitestatemachine,有穷状态机)以模拟生物高度复杂、且原理上尚未完全探明的运动决策过程,这就决定了这类模型的实际性能。由于状态有限且预设规范有限,这类模型只可能在已知环境中行动,只可能具有相当有限的自适应能力。“基于行为的运动控制策略”一般不包含主控计算机,系统的运动完全由各个关节分布的局部控制器的相互耦合来完成。这是一种按照行为主义控制理论设计的控制系统。低等生物常常是依靠各神经节的相互作用来完成运动,而非大脑中央控制(事实上很多生物没有大脑或大脑很不发达)也可达到很高的自适应性。这可认为是一种不经过思考的智能:基于这种“无思考智能”的控制系统具有实时性和自组织的特点,在高度非确定性的场合和非结构化环境中具有比较良好的适应性。此种控制方式缺点是其状态机耦合网络设计复杂,且不适于完成一些高度确定的任务,而且可重复性较差。目前未见有行为主义控制策略应用于蛇形机器人的报导。在深入研究国内外各蛇形机器人的基础上,我们作了不少关于蛇形机器人控制方式的探索。既然传统的“基于运动模型的运动控制策略”以及“基于行为的运动控制策略”目前无法达到实用化,于是一个变通的研究方向就是:运动层面的仿生和决策层面的人控,以利用某些生物运动的优势(仿生特征),但又具有生物的智能(人工控制)。这应该是一个非常好的取长补短的策略,可以部分采用;但是这样实际上增加了机器人的操纵难度,因而限制了其应用领域。如能较好地综合以上方案则可以达到较好的综合效果。所以,我们首先把行为主义控制模式应用于蛇形机器人的运动模式发生器,得到了多种全新的运动模式。然后归纳出了结合集中——分布式结构的蛇形机器人运动学模型。基于运动模式发生器产生的多种运动单元,利用蛇形机器人运动学模型完成中枢控制逻辑,实现了一种“分布式底层运动控制——高层中枢决策”的控制模型。以此为指导,我们设计了蛇形机器人SolidSnake并且完成了机器人样机,在国内外首先实现了高效率的自主上楼梯运动。我们的实验已经证明本文提出的控制模型没有原则上的错误以及不可克服的应用困难。在应用方面,蛇形机器人由于其自身的多关节、多运动方式,有很好的地形适应性,是执行废墟搜救、排除爆炸物等任务的良好平台,但是目前尚未见到蛇形机器人实用化的报导,SolidSnake已经可以在特定环境(自主与人控相结合,从某楼房楼外进入第二层的堆储杂物房间,找到并排除爆炸物)中完成模拟反恐任务,作了使蛇形机器人达到实用化的探索。SolidSnake为杆式结构,模块化,可以在一定范围内随意增加或减少关节模块,机器人可以自动识别关节数量,可在二维结构和三维结构之间随时转换;控制方式采用主控计算机??总线??关节控制模块??电机/传感器的结构,应用行为主义控制理论在传统的“带反馈修正的命令宏”式控制方
本文标题:模块化可重构蛇形机器人技术报告
链接地址:https://www.777doc.com/doc-6335755 .html