您好,欢迎访问三七文档
1UsingBayesianDecisionforOntologyMappingJieTang*,JuanziLi,BangyongLiang,XiaotongHuang,YiLi,andKehongWang(DepartmentofComputerScienceandTechnology,TsinghuaUniversity,P.R.China,100084){j-tang02,liangby97,yi-li}@mails.tsinghua.edu.cn,{ljz,x.huang,wkh}@keg.cs.tsinghua.edu.cnAbstract.Ontologymappingisthekeypointtoreachinteroperabilityoverontologies.Insemanticwebenvironment,ontologiesareusuallydistributedandheterogeneousandthusitisnecessarytofindthemappingbetweenthembeforeprocessingacrossthem.Manyeffortshavebeenconductedtoautomatethediscoveryofontologymapping.However,someproblemsarestillevident.Inthispaper,ontologymappingisformalizedasaproblemofdecisionmaking.Inthisway,discoveryofoptimalmappingiscastasfindingthedecisionwithminimalrisk.AnapproachcalledRiMOM(RiskMinimizationbasedOntologyMapping)isproposed,whichautomatestheprocessofdiscoverieson1:1,n:1,1:nullandnull:1mappings.BasedonthetechniquesofnormalizationandNLP,theproblemofinstanceheterogeneityinontologymappingisresolvedtoacertainextent.Todealwiththeproblemofnameconflictinmappingprocess,weusethesaurusandstatisticaltechnique.Experimentalresultsindicatethattheproposedmethodcansignificantlyoutperformthebaselinemethods,andalsoobtainsimprovementovertheexistingmethods.Keywords.OntologyMapping,SemanticWeb,BayesianDecision,OntologyInteroperabilityContactinformationofCorrespondingAuthorName:TangJieE-mail:j-tang02@mails.tsinghua.edu.cnMail-Address:12#109,TsinghuaUniversity,Beijing,P.R.China100084Telephone:+86-10-62781461Fax:+86-10-6278983121UsingBayesianDecisionforOntologyMappingJieTang*,JuanziLi,BangyongLiang,XiaotongHuang,YiLi,andKehongWang(DepartmentofComputerScienceandTechnology,TsinghuaUniversity,P.R.China,100084){j-tang02,liangby97,yi-li}@mails.tsinghua.edu.cn,{ljz,x.huang,wkh}@keg.cs.tsinghua.edu.cnAbstract.Ontologymappingisthekeypointtoreachinteroperabilityoverontologies.Insemanticwebenvironment,ontologiesareusuallydistributedandheterogeneousandthusitisnecessarytofindthemappingbetweenthembeforeprocessingacrossthem.Manyeffortshavebeenconductedtoautomatethediscoveryofontologymapping.However,someproblemsarestillevident.Inthispaper,ontologymappingisformalizedasaproblemofdecisionmaking.Inthisway,discoveryofoptimalmappingiscastasfindingthedecisionwithminimalrisk.AnapproachcalledRiMOM(RiskMinimizationbasedOntologyMapping)isproposed,whichautomatestheprocessofdiscoverieson1:1,n:1,1:nullandnull:1mappings.BasedonthetechniquesofnormalizationandNLP,theproblemofinstanceheterogeneityinontologymappingisresolvedtoacertainextent.Todealwiththeproblemofnameconflictinmappingprocess,weusethesaurusandstatisticaltechnique.Experimentalresultsindicatethattheproposedmethodcansignificantlyoutperformthebaselinemethods,andalsoobtainsimprovementovertheexistingmethods.Keywords.OntologyMapping,SemanticWeb,BayesianDecision,OntologyInteroperability1IntroductionOntologies,asthemeansforconceptualizingdomainknowledge,havebecomethebackbonetoenablethefulfillmentoftheSemanticWebvision[3].Manyontologieshavebeendefinedtomakedatasharable,forexample,CycOntology[17],EnterpriseOntology[38],Bibliographic-dataOntology[14],BiologicalandChemicalOntology(BAO)[25],andBio-Ontologies[43].See[45]formoreontologies.Unfortunately,ontologiesthemselvesaredistributedandheterogeneous.Ontologieshavetwokindsofheterogeneities:metadataheterogeneityandinstanceheterogeneity[4,16].Specifically,entities(entityrepresentsconcept,relation,orinstance)withthesamemeaningindifferentontologiesmayhavedifferentlabelnamesandthesamelabelnamemaybeusedforentitiesthathavedifferentintentionalmeanings;instancesindifferentontologiesmayhavedifferentrepresentations;anddifferentontologiesmayhavedifferenttaxonomystructures.Inordertoachievesemanticinteroperabilityoverontologies,itisnecessarytodiscover1SupportedbytheNationalNaturalScienceFoundationofChinaunderGrantNo.60443002*CorrespondingauthorE-mailaddresses:j-tang02@mails.tsinghua.edu.cn,liangby97@mails.tsinghua.edu.cn,ljz@keg.cs.tsinghua.edu.cn,x.huang@keg.cs.tsinghua.edu.cn,yi-li@mails.tsinghua.edu.cn,wkh@keg.cs.tsinghua.edu.cn3ontologymappingatthefirststep.Thisisexactlytheproblemaddressedinthispaper.Manyeffortshavebeenconductedtodealwiththeproblem.However,thefollowingproblemsstillexist.First,thenumberofcardinalitiesthatcanbeprocessedislimited.Mostoftheworkfocusesononly1:1mapping[9,10,15,18,22,23,26,29]despiteofthefactthatapproximately22%-50%ofmappingsarebeyondthiscardinalitybystatisticonreal-worldexamples[11,32].Secondly,Ontologymappingworkhasbeendonemainlyonmetadataheterogeneity,notoninstanceheterogeneity.Innaturallanguageprocessing,textnormalizationhasbeenstudied[34].Butbeforeadaptingthemethodologytoproblemofinstanceheterogeneity,manyeffortsarestillrequired.Theexistingmethodologiesproposedinthepreviousworkcanbeusedinontologymapping.However,theyarenotsufficientforsolvingalltheproblems.Atpresent,questionsariseforontologymapping:(1)howtoformalizetheproblemsothatitcandescribedifferentkindsofmappingcardinalitiesandheterogeneities,(2)howtosolvetheprobleminaprincipledapproach,and(3)howtomakeanimplementat
本文标题:1 1 Using Bayesian Decision for Ontology Mapping
链接地址:https://www.777doc.com/doc-6372182 .html