您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 点线面的位置关系习题精选
QPRS1.如图,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的图是()QRpSPRQSPQRSABCD2.下列命题中,正确命题的个数是()①平行于同一直线的两平面平行;②平行于同一平面的两平面平行;③垂直于同一平面的两平面平行;④垂直于同一直线的两平面平行;A.0B.1C.2D.33.长方体的长、宽都是6cm,高是23cm,则BC与A1C1所成的角是()A.30B45C60D904.已知直线m、n及平面,,给出下列三个命题①//,////mnmn;②//,mnmn;③,//mn其中正确命题的个数是()A.0B.1C.2D.35.如图,PAABCD矩形所在的平面,则图中相互垂直的平面共有几组()A.2B.3C.4D.56.以等腰直角ABC的斜边BC上的高AD为折痕,将ABC折成二面角C—AD—B,当折后的ABC为正三角形时,此二面角的大小是()A.30B45C60D90(第5题)7.如图,在正方体ABCD-A1B1C1D1中,E、F分别是AB、C1D1的中点,则AB与截面A1ECF所成角的大小等于()A.B1C与D1C1所成的角;B.A1B1与A1C所成的角;C.A1B与B1C1所成的角;D.D1B与EF所成的角;8.PCABCD菱形所在的平面,则PA与BD的位置关系是()A.平行B.相交但不垂直C.垂直相交D.异面垂直9设α、β、r是互不重合的平面,m,n是互不重合的直线,给出四个命题:①若m⊥α,m⊥β,则α∥β②若α⊥r,β⊥r,则α∥β③若m⊥α,m∥β,则α⊥β④若m∥α,n⊥α,则m⊥n其中正确命题的个数是()A.1B.2C.3D.410△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图CBA的面积为()A.43B.83C.86D.16611设正方体的表面积为242cm,一个球内切于该正方体,那么这个球的体积是()A.343cmB.63cmC.383cmD.3323cm12.空间中两两相交的三条直线可以确定个平面13.在空间四边形ABCD中,各边及对角线长均为2,E是AB的中点,过CE且平行于AD的平面交BD于F,则CEF的面积是ADBCPADBCA1B1C1D1ADBCA1B1C1D1EF14.在30的二面角l中,,PPQ,垂足为Q,PQa,则点Q到面的距离为15.设,,abc是空间的三条直线,下面给出四个命题:①若ab,bc,则//ac;②若,ab是异面直线,,bc是异面直线,则,ac也是异面直线;③有三个角是直角的四边形是矩形;④球面上的任意三点可以确定一个平面;其中真命题的序号是16.四面体ABCD中,CB=CD,ADBD,E、F分别是AB、BD的中点,求证:⑴EF//面ACD;⑵面EFC面BDC17.在直角二面角D—AB—E中,ABCD是正方形,F为CE上的点,且BF面ACE,求证:AE面BCE18.P是所在平面外一点,M、N分别是AB、PC上的点且PNAMNCMB,求证:MN//面PAD19.在四棱锥P—ABCD中,面PAD是等边三角形且与底面ABCD垂直,底面ABCD是菱形且60BAD,N是PB的中点,过A、D、N三点的平面交PC于M,求证:⑴PBBC;⑵面PBC面ADMN20.(本题满分10分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC平面BDE.DCABPNMDCABPNMDCABEFDCABEF
本文标题:点线面的位置关系习题精选
链接地址:https://www.777doc.com/doc-6373383 .html