您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 最新专题初中数学反比例函数解答题(含答案)教程文件
学习资料精品文档初中数学反比例函数(解答题)组卷一.解答题(共29小题)1.(2016•广州)已知A=(a,b≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.2.(2016•茂名)如图,一次函数y=x+b的图象与反比例函数y=(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.3.(2016•金华)如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.4.(2016•宁夏)如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.学习资料精品文档5.(2016•攀枝花)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.6.(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.7.(2016•乐山)如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2)、B(,n).(1)求这两个函数解析式;学习资料精品文档(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.8.(2016•湖北)如图,直线y=ax+b与反比例函数y=(x>0)的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.(1)m=,n=;若M(x1,y1),N(x2,y2)是反比例函数图象上两点,且0<x1<x2,则y1y2(填“<”或“=”或“>”);(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.9.(2016•泰州)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.学习资料精品文档10.(2016•广安)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(﹣1,6),B(a,﹣2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.11.(2016•湖州)已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.12.(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).学习资料精品文档(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.13.(2016•威海)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.14.(2016•莆田)如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.学习资料精品文档15.(2016•临夏州)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.16.(2016•自贡)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b﹣=0的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式kx+b﹣<0的解集.17.(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.学习资料精品文档18.(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.19.(2016•贵港)如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.20.(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.学习资料精品文档21.(2016•菏泽)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.22.(2016•梅州)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y=的图象上.一次函数y=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求k和b的值;(2)设反比例函数值为y1,一次函数值为y2,求y1>y2时x的取值范围.23.(2016•大庆)如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.学习资料精品文档24.(2016•湘西州)如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.25.(2016•安顺)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.26.(2016•巴中)已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤的解集.学习资料精品文档27.(2016•新疆)如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.28.(2016•咸宁)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.29.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;学习资料精品文档(2)求该反比例函数和一次函数的解析式.学习资料精品文档初中数学反比例函数(解答题)组卷参考答案与试题解析一.解答题(共29小题)1.(2016•广州)已知A=(a,b≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.2.(2016•茂名)如图,一次函数y=x+b的图象与反比例函数y=(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.学习资料精品文档【分析】(1)由点A的坐标结合反比例函数图象上点的坐标特征,即可求出k值,从而得出反比例函数解析式;再将点A、B坐标分别代入一次函数y=x+b中得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)连接AO,设线段AO与直线l相交于点M.由A、O两点关于直线l对称,可得出点M为线段AO的中点,再结合点A、O的坐标即可得出结论.【解答】解:(1)∵点A(﹣1,4)在反比例函数y=(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,得:,解得:.(2)连接AO,设线段AO与直线l相交于点M,如图所示.∵A、O两点关于直线l对称,∴点M为线段OA的中点,∵点A(﹣1,4)、O(0,0),∴点M的坐标为(﹣,2).∴直线l与线段AO的交点坐标为(﹣,2).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式、解二元一次方程组以及中点坐标公式,解题的关键是:(1)由点的坐标利用待定系数法
本文标题:最新专题初中数学反比例函数解答题(含答案)教程文件
链接地址:https://www.777doc.com/doc-6388850 .html