您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 控制一类超混沌系统到达任意目标
1ControloneclassofhyperchaoticsystemtoreacharbitrarydesiredtargetMaJun1PuZhongsheng1TangGuoning2WangChunni1(1Departmentofphysics,schoolofscience,LanZhouUniversityofTechnology,China,GansuLanZhou.730050)(2CollegeofphysicsandinformationTechnology,GuangxiNormalUniversity,China,GuangxiGuilin541004)Abstract:Basingonthestabilitytheory,itgetstherightformofcontrolleranalytically.Usingtherelevantcontrollerproposedinthispaper,itcancontrolthesystemtoreacharbitrarystablepoint,limitcircle,differentperiodorbitsofthesystemandoutside,thenumericalresultisconsistentwiththetheoryanalysis.Keywords:L.Coscillator;stability;Lyapunovfunction;hyperchaosPACC:0545IntroductionInrecentyears,synchronizationandcontrolofchaosattractedmoreandmoreattentionamongpeoples,manyrelevantmethodswereproposedtosynchronizeandcontrolchaosfordifferentchaoticsystems[1-6],butitstillencountersomeproblemstofindtherightrequirementforcontrollerswhichcancontrolthechaoticsystemtoreachthedesiredtargetanalytically,Inthispaper,itproposedmethodstocontrolthe4DL.Coscillator,basingonthestabilitytheoryandmatrixtheory,itanalyticallygottherequirementsformofcontrollerstocontrolthehyperchaoticsystemtoreacharbitrarystablepoint,limitcircle,differentperiodorbitsofthesystem(2-period,3-period,etal)andoutside,thenumericalresultisconsistentwiththetheoryanalysis,thetheoryandanalyticmethodcanbeputintousetocontrolotherchaoticandhypercahoticsystems.1ControlprincipleDynamicequationofthecontrolledL.Coscillatorhyperchaoticsystem[1-2,7]:()()⎪⎪⎩⎪⎪⎨⎧+---=--=-=+--=4443443132121321111uxHxdxxxcxxxbxxxuxxaxx&&&&em(1)u1andu4arecontrollers,whenu1=0andu4=0,itishyperchaotic[7].Partone:UsingoutsidestandardsignaltocontrolthesystemSupposingr(t)isstandardsignal,itcanconstructLyapunovfunctionasfollowing[6]:()()()()()()()()()222221txtrtxtrtrtxtV&&-+-+-=(2)dtdVV/=&=V2-+()222xrxr&&-+-()[22122xbrrr--++&&&()]1312uxxb-++--a(3)Evidently,setthecontrollerasthefollowingform(4),itwillmakeequation(5).1SupportedbyNationalsciencefund(number10147101).E-mil:hyperchaos@163.com_______________________________________________________________________________()()312212122xxbxbrrru++----++=a&&&(4)dtdVV/=&=V2-(5)Certainly,theLyapunovfunctionVisconvergentstably,asaresult,when∞→t,itresultsin:()()trtx→2(6)Supposing)(tr′isanotherstandardsignal,itcanconstructLyapunovfunctionsamely.()()()()()()()()()233232txtrtxtrtrtxtV&&-′+-′+′-=(7)Evidently,setthecontrollerasthefollowingform:()()()()()221412/)2(22xbxbcrrru-+----+++=eeememee&&&)22(rrr′+′+′-&&&me()()()()11/21/2244432--+---+-+xHxdxcxccmemeeme(8)undertheactionofcontroller(8),when∞→t,itmakes()()trtx′→3.Additionally,r(t)and()tr′cancomefromanothersystemorsignalgeneratoroutside.Partone:Usingstandardsignaloutsidetocontrolsystem1.1ControlthesystemtoreacharbitrarystablepointTocontrolthesystemtoreachthepoint(bx02,x02,0,bx02),onecontrolleru1(4)isgoodenough.Undertheactionofu1(4),selectingr(t)=x02,fromthetheoryanalysisabove,()()022xtrtxt=──→─∞→(9)Consideringthesecondpartequationofthesystem(1),itiseasytofind221bxxx+=&020bxt+──→─∞→=02bx(10)Thefrondosecontroller()()3122021212xxbxbxu++----=a(11)Putting(11)and(9)intothefirstpartequationofthesystem(1),itiseasytofindthevariablex3decreasestozeroagainsttime,consideringthethirdpartequationofthesystem,itcanfindthatthevariablex4willreachthevaluebx02Tocontrolthesystemtoreachthepoint(bx02,x02,x03,bx02-cx03),twocontrollersu1andu4arenecessary.Undertheactionofu1(4)andu4(8):()()022xtrtxt=──→─∞→,021bxxt──→─∞→,()033xtrxt=′──→─∞→forwardly,itresultsin:03023314cxbxxcxxxt-──→─--=∞→&m(12)1.2Controlthesystemtoreacharbitraryperiodorbit中国科技论文在线_______________________________________________________________________________,making()tktrwsin1=,wisconstant,1kissignalextent,usingonesinglecontrolleru1:()()312212122xxbxbrrru++----++=a&&&3122211)2()1(sincos2sin2xxabxbtktktk++-----+=(13)when∞→t,itwillmake:()()tktrtxwsin12=→(14)221bxxx+=&wtbkwtktsincos11+──→─∞→w=)sincos(1tbtk=()fww++tbksin221(15))/arccos(22wf+=bb,thevariable1xisperiodsignal,3xand4xarealsoperiodsignal.Parttwo:NousingstandardsignaloutsidetocontrolsystemTocontrolthesystemtoreachlimitcircle,selectingcontrollerasfollowing:3322111xkxkxku++=(16)⎩⎨⎧--≥+-=1)(14444444xxkdxxkdu(17)Puttingcontroller(16)and(17)intosystem(1),itwillmake()()TTxxxxAxxxx43214321,,,,,,=&&&&(18)()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------+=eemmm//100/1/0/10010114321kdcbkkkaA(19)Settingrightvalueforki,i=1,2,3,4,twoeigenvaluesofequation(18)arenegative,thelastpairisimaginarynumber,itcancontrolthesystemtoreachstablelimitcircle.forexample:k1=-0.181653458,k2=k3=0,k4=3.0,UsingsoftwareofMathCADtocomputetheeigenvaluesofequation(19):eigenvals0.418346542110.301-0.05-001-00.05-10.33001-0.37-0.33⎛⎜⎜⎜⎜⎜⎜⎝⎞⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎝⎞⎟⎟⎟⎟⎟⎟⎠2.047i2.047i-20.727-0.166-⎛⎜⎜⎜⎜⎝⎞⎟⎟⎟⎟⎠=(20)2Numericalsimulation:2.1.1Controlsystemtoreach(bx02,x02,0,bx02)Settingx02=2.0,undertheactionofcontroller(4),with4-orderR-Kmethodtocomputeequationsystem(1),stepsizeh=0.001,thefollowingGraph1showthenumericalsimulationresult,thevariablexi,i=1,2,3,4,werecontrolledto(0.1,2
本文标题:控制一类超混沌系统到达任意目标
链接地址:https://www.777doc.com/doc-640026 .html