您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 直线与方程综合复习检测题
直线与方程综合复习检测题菁优网©2010-2014菁优网直线与方程综合复习检测题一.选择题(共14小题)1.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.32.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.3.(2015•河南二模)已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95D.234.(2015•惠州模拟)已知等差数列an的前n项和为Sn,若a3=18﹣a6,则S8=()A.18B.36C.54D.725.(2014•湖北)已知x=lnπ,y=log52,,则()A.x<y<zB.z<x<yC.z<y<xD.y<z<x6.(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.27.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.8.(2014•陕西)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(2014•北京)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件菁优网©2010-2014菁优网11.(2014•甘肃一模)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.12.(2015•兴国县一模)椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为,则的值为()A.B.C.D.13.(2014•甘肃二模)已知点P在直线x+2y﹣1=0上,点Q在直线x+2y+3=0上,PQ的中点为M(x0,y0),且y0>x0+2,则的取值范围是()A.B.C.D.14.(2014•湖北模拟)设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,且0≤c≤,则这两条直线之间的距离的最大值和最小值分别是()A.B.C.D.二.填空题(共3小题)15.(2009•奉贤区二模)已知点P(﹣1,1)和点Q(2,2),若直线l:x+my+m=0与线段PQ不相交,则实数m的取值范围是_________.16.一条直线过点P(2,0)且点Q(﹣2,)到该直线的距离等于4,则该直线倾斜角为_________.17.经过直线2x+y+5=0和直线x+y+3=0的交点,且在x上的截距为4的直线方程为_________.三.解答题(共2小题)18.求过点P(0,1)的直线l,使它包含在两已知直线l1:2x+y﹣8=0和l2:x﹣3y+10=0间的线段被点P平分.19.已知△ABC的三个顶点分别为A(1,1),B(5,4),C(3,8),过A点作直线l,它把△ABC的面积分为1:3两部分,求直线l的点斜式方程.菁优网©2010-2014菁优网直线与方程综合复习检测题参考答案与试题解析一.选择题(共14小题)1.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.3考点:余弦定理.菁优网版权所有专题:解三角形.分析:将“c2=(a﹣b)2+6”展开,另一方面,由余弦定理得到c2=a2+b2﹣2abcosC,比较两式,得到ab的值,计算其面积.解答:解:由题意得,c2=a2+b2﹣2ab+6,又由余弦定理可知,c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴﹣2ab+6=﹣ab,即ab=6.∴S△ABC==.故选:C.点评:本题是余弦定理的考查,在高中范围内,正弦定理和余弦定理是应用最为广泛,也是最方便的定理之一,高考中对这部分知识的考查一般不会太难,有时也会和三角函数,向量,不等式等放在一起综合考查.2.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.考点:余弦定理;正弦定理.菁优网版权所有专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.3.(2015•河南二模)已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95D.23考点:等差数列的性质;等差数列的前n项和.菁优网版权所有菁优网©2010-2014菁优网专题:计算题;压轴题.分析:本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.解答:解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C点评:在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.4.(2015•惠州模拟)已知等差数列an的前n项和为Sn,若a3=18﹣a6,则S8=()A.18B.36C.54D.72考点:等差数列的性质.菁优网版权所有专题:计算题.分析:利用等差数列的性质可得18=a1+a8,代入等差数列前8项和公式求出S8的值.解答:解:∵a3=18﹣a6,∴a3+a6=18=a1+a8,∴S8===72,故选D.点评:本题考查等差数列的性质得应用,以及等差数列前n项和公式,求出18=a1+a8,是解题的关键.5.(2014•湖北)已知x=lnπ,y=log52,,则()A.x<y<zB.z<x<yC.z<y<xD.y<z<x考点:不等式比较大小.菁优网版权所有专题:计算题;压轴题.分析:利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.解答:解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选D.点评:本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.6.(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.2菁优网©2010-2014菁优网考点:简单线性规划.菁优网版权所有专题:数形结合.分析:由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.解答:解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.点评:本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.7.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.考点:正弦定理;函数的值域.菁优网版权所有专题:计算题.分析:由正弦定理得,再根据△ABC是锐角三角形,求出B,cosB的取值范围即可.解答:解:由正弦定理得,∵△ABC是锐角三角形,∴三个内角均为锐角,即有,0<π﹣C﹣B=π﹣3B<菁优网©2010-2014菁优网解得,又余弦函数在此范围内是减函数.故<cosB<.∴<<故选A点评:本题考查了二倍角公式、正弦定理的应用、三角函数的性质.易错点是B角的范围确定不准确.8.(2014•陕西)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假考点:四种命题.菁优网版权所有专题:阅读型;简易逻辑.分析:根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解答:解:根据共轭复数的定义,命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴逆命题是假命题;根据否命题与逆命题是互为逆否命题,命题与其逆否命题同真同假,∴命题的否命题是假命题;逆否命题是真命题.故选:B.点评:本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:充要条件.菁优网版权所有专题:计算题;简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.10.(2014•北京)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.菁优网版权所有分析:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,此题的关键是对不等式性质的理解.解答:解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2>b2”的不充分条件;反之,由a2>b2也不一定得a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,所以“a>b”是“a2>b2”的不必要条件.菁优网©2010-2014菁优网故选D点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.11.(2014•甘肃一模)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.考点:椭圆的标准方程.菁优网版权所有专题:圆锥曲线的定义、性质与方程.分析:设
本文标题:直线与方程综合复习检测题
链接地址:https://www.777doc.com/doc-6422516 .html