您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 等差数列复习(全面知识点+精选例题+习题附答案)精编材料pdf版
[数列]1|10二、等差数列1.等差数列的定义如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差,通常用字母d表示.递推式表示为1nnaad或1(2)nnaadn.例如:数列{}na满足12nnaa,则数列{}na是公差为2的等差数列.注:0d时,为递增数列;0d时,为递减数列;0d时,为常数列.2.等差中项若三个数a,A,b成等差数列,则A叫作a与b的等差中项.此时2abA,2abA.3.等差数列的通项公式等差数列{}na的首项为1a,公差为d,则1(1)naand.例1在等差数列{}na中,若1038a,2078a,则15a_____.解析:15a为等差中项,则1020152aaa,153878582a.答案:58例2等差数列{}na中,510a,1231a,则通项公式na_____.解析:设公差为d,则511214101131aadaad,解得123ad23(1)35nann.答案:35n例3401是不是等差数列5,9,13,的项?解析:15a,(9)(5)4d,54(1)41nann令40141n,解得100n,即401是这个数列的第100项.答案:是例4{}na是首项11a,公差3d的等差数列,如果2005na,则序号n等于()A.667B.668C.669D.670解析:1(1)13(1)2005naandn,解得669n.答案:C[数列]2|10例5首项为24的等差数列,从第10项开始为负数,则公差d的取值范围是_____.解析:由题意可知91000aa,所以118248092490addadd,解得833d.答案:8[3,)34.等差数列的性质(1)等差数列{}na的第m项为ma,则()nmaanmd.★例如:8123107652aadadadad.(2)若mnpq,则mnpqaaaa,若2mnp,则2mnpaaa.★例如:1928374652aaaaaaaaa,12132nnnaaaaaa.(3)下标成等差数列且公差为m的项ka,kma,2kma,组成公差为md的等差数列.例如:135721,,,,,,naaaaa组成公差为2d的等差数列;51015205,,,,,,naaaaa组成公差为5d的等差数列.(4){}na是公差为d的等差数列,则{}nkab也是等差数列,公差为kd.(5){}na,{}nb都是等差数列,则{}nnab,{}nnpaqb也是等差数列.例6在等差数列{}na中,22a,34a,则10a()A.12B.14C.16D.18解析:公差322daa,102(102)28218aad.答案:D例7在等差数列{}na中,12a,3510aa,则7a()A.5B.8C.10D.14解析:1735aaaa,71028a.答案:B例8在等差数列{}na中,34512aaa,那么127aaa()A.14B.21C.28D.35解析:3454312aaaa,得44a,则1274728aaaa.答案:C[数列]3|10例9等差数列{}na满足23418aaa,23466aaa,求{}na通项公式.解析:2343318aaaa,得36a,设公差为d则234333()()aaaadaad2(6)6(6)6(36)66ddd解得5d,又3(3)naand当5d时,59nan,当5d时,521nan.答案:59nan或521nan5.判断一个数列是等差数列的方法(1)定义法:1nnaad(常数).(2)等差中项法:122++=+nnnaaa或112-+=+nnnaaa.★(3)通项公式法:=naknb(公差为k).(4)前n项和公式法:2nSAnBn(不含常数项的二次函数).★例10在数列{}na中,已知11a,122nnnaaa,求证1{}na是等差数列.证明:122nnnaaa两边取倒数得1211122nnnnaaaa,即11112nnaa故1{}na是首项111a,公差12d的等差数列.例11已知数列{}na的通项公式为naknb,那么这个数列一定是等差数列吗?解析:1(1)()nnaaknbknbk,是一个与n无关的常数{}na是公差为k的等差数列.例12已知正项数列{}na中,11a,22a,222112(2)nnnaaan,则6a____.解析:由222112(2)nnnaaan可知2{}na为等差数列211a,224a,公差3d则22613(61)16aa,64a.答案:4[数列]4|10例13已知数列{}na的前n项和为nS,且满足112a,12(2)nnnaSSn.(1)求证:数列1{}nS是等差数列;(2)求nS和na.(1)证明:由递推关系,可知0nS,当2n时,112nnnnnaSSSS两边同除以1nnSS得1112nnSS故1{}nS是首项为11112Sa,公差为2的等差数列.(2)解析:由(1)知122(1)2nnnS,所以12nSn当2n时,112(1)nnnaSSnn,112a不适合上式故1(1)21(2)2(1)nnannn.练习题:1数列33nan,证明{}na是等差数列.2等差数列{}na中,若23a,47a,则6a()A.11B.7C.3D.23数列{}na中,12a,12nnaa,则8a()A.16B.12C.12D.164数列{}na中,32a,71a,若1{}na为等差数列,则5a()A.23B.32C.43D.345等差数列{}na中,22a,3516aa,则na______.6递增的等差数列{}na满足11a,2324aa,则na______.[数列]5|107等差数列{}na中,13a,2414aa,2019na,则n______.8首项为24的等差数列,从第10项开始为正,则公差d的取值范围是______.9在等差数列{}na中,4a,12a是方程2310xx的两根,则8a()A.32B.32C.32D.不能确定10{}na为等差数列,若1598aaa,则28cos()aa()A.12B.32C.12D.3211{}na是等差数列,且14745aaa,25839aaa,则369aaa()A.24B.27C.30D.3312等差数列{}na中,若3456745aaaaa,则28aa_____.13等差数列{}na中,34512aaa,那么1237aaaa()A.35B.28C.21D.1414等差数列{}na中,1353aaa,67a,则{}na的通项公式为______.15设{}na是公差为正数的等差数列,若12318aaa,123120aaa,则3a_____.16在等差数列{}na中,已知295aa,则573aa的值为_____.17等差数列{}na中,若4681012120aaaaa,则91012aa的值为()A.10B.11C.12D.1418等差数列{}na前17项和1751S,则5791113aaaaa()A.3B.6C.17D.5119等差数列{}na前n项和为nS,且55Sa,若40a,则74aa_____.20《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份面包数之和恰好是较少的两份面包数之和的7倍,则最少的那份面包数是______.21成等差数列的三个数的和为24,第二个数与第三个数之积为40,求这三个数.[数列]6|1022《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为()升.A.1B.6766C.4744D.373323已知数列{}na满足11a,121nnnaaa,则100a()A.1100B.1299C.1200D.119924已知数列{}na满足1120nnnnaaaa,且11a,则{}na的通项公式为()A.21nnB.12nC.121nD.2n25已知数列{}na中,32a,71a,若1{}1na为等差数列,则19a()A.0B.12C.23D.226已知数列{}na满足10a,1211nnnaaa,则13a()A.143B.156C.168D.195答案解析:1解析:用定义法,1[33(1)](33)3nnaann即数列每一项与前一项的差为定值3所以{}na是公差为3的等差数列.2解析:4a为2a和6a的等差中项,则4262aaa,即6143a,611a.答案:A3解析:由条件知12nnaa,故数列为首项为2,公差为2的等差数列,81712aad.答案:B[数列]7|104解析:由条件知73114daa,带入解得18d故5311324daa,543a.答案:C5解析:由条件得11122416adadad,解得113ad,故34nan.答案:34n6解析:由2324aa可得211(2)()4adad,解得2d又数列是递增数列,则2d,所以1(1)21naandn.答案:21n7解析:由13a,11214adad联立解得2d1(1)21naandn2019,解得1009n.答案:10098解析:设公差为d,则100a,90a,解得833d.答案:8(,3]39解析:由韦达定理可知4123aa,又41282aaa,832a.答案:B10解析:1952aaa,159538aaaa19163aa,28cos()aa161cos32.答案:A11解析:由条件知44345,15aa,55339,13aa等差数列的公差为2,456,,aaa成等差数列则613211a,3696333aaaa.答案:D[数列]8|1012解析:34567374655555()()22545aaaaaaaaaaaaaa59a,则285218aaa.答案:1813解析:3454312aaaa,得44a,12374728aaaaa.答案:B14解析:135333aaaa,31a,6336aad,得2d3naa(3)12(3)25ndnn.答案:25nan15解析:12318aaa,123120aaa26a,1320aa,1312aa解得32a或310a,因为公差为正,故310a.答案:1016解析:291295aaad,571134182(29)2510aaadad.答案:1017解析:468101285120aaaaaa,得824a9101182aaad11(9)2ad1811(7)1222ada.答案:C18解析:171
本文标题:等差数列复习(全面知识点+精选例题+习题附答案)精编材料pdf版
链接地址:https://www.777doc.com/doc-6428200 .html