您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2020人教版数学八年级下册《期末考试试卷》及答案
人教版数学八年级下学期期末测试卷一、选择题1.计算16的结果为()A.2B.-4C.4D.±42.若二次根式3a有意义,则a的取值范围是()A.a<3B.a>3C.a≤3D.a≠33.下列说法正确的是()A.对角线互相垂直的平行四边形是正方形B.一组对边平行另一组对边相等的四边形是平行四边形C.一组对边平行另一组对角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形4.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.5.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022A.甲B.乙C.丙D.丁6.一次函数y=kx+b(k0,b0)的图象可能是()A.B.C.D.7.某青年排球队12名队员的年龄情况如下表:年龄1819202122人数1xy22其中x>y,中位数为20,则这个队队员年龄的众数是()A.3B.4C.19D.208.已知A(﹣13,y1)、B(﹣12,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y19.如图,正方形ABCD的边长为10,8AGCH,6BGDH,连接GH,则线段GH的长为()A.835B.22C.145D.105210.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时二、填空题11.某正比例函数图象经过点(1,2),则该函数图象的解析式为___________12.将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________13.已知一组数据:0,2,x,4,5,这组数据的众数是4,那么这组数据的平均数是_____.14.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________15.如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=2.在BC上找点G,使EG=AF,则BG的长是___________16.如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________三、解答题17.计算:(1)(248327)3(2)85022aaa18.如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.19.某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:应试者面试笔试甲8690乙9283(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?20.如图是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)在图(1)中,点P在小正方形的顶点上,作出点P关于直线AC的对称点Q(2)在图(2)中,画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上(3)在图(3)中,B是AC的中点,作线段AB的垂直平分线,要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹21.将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112yx与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围22.某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.23.如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D(1)如图1,当P为AB的中点时,求出AD的长(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式24.如图,在平面直角坐标系中,直线112yx分别交两坐标轴于A、B两点,直线y=-2x+2分别交两坐标轴于C、D两点(1)求A、B、C、D四点的坐标(2)如图1,点E为直线CD上一动点,OF⊥OE交直线AB于点F,求证:OE=OF(3)如图2,直线y=kx+k交x轴于点G,分别交直线AB、CD于N、M两点.若GM=GN,求k的值答案与解析一、选择题1.计算16的结果为()A.2B.-4C.4D.±4【答案】C【解析】【分析】根据算术平方根的定义进行计算即可.【详解】解:16=4,故选C.【点睛】本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.2.若二次根式3a有意义,则a的取值范围是()A.a<3B.a>3C.a≤3D.a≠3【答案】C【解析】【分析】根据被开方数是非负数,可得答案.【详解】解:由题意得,3−a⩾0,解得a⩽3,故选:C.【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3.下列说法正确的是()A.对角线互相垂直的平行四边形是正方形B.一组对边平行另一组对边相等的四边形是平行四边形C.一组对边平行另一组对角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形【答案】C【解析】【分析】根据平行四边形的判定与性质,菱形的判定,正方形的判定进行判断即可.【详解】解:选项A中,对角线互相垂直且相等的平行四边形是正方形,故A选项错误;选项B中,当一组对边平行,另一组对边相等时,该四边形可能为等腰梯形,故B选项错误;选项C中,由一组对边平行,一组对角相等可得另一组对边平行,所以是平行四边形,故C选项正确;选项D中,对角线互相垂直的平行四边形是菱形,故D选项错误;故选:C.【点睛】本题主要考查了平行四边形的判定与性质,菱形的判定,正方形的判定,掌握平行四边形的判定,菱形的判定,正方形的判定是解题的关键.4.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.【答案】C【解析】【分析】根据注水的容器可知最底层h上升较慢,中间层加快,最上一层更快,即可判断.【详解】∵匀速地向如图的容器内注水,由注水的容器可知最底层底面积大,h上升较慢,中间层底面积较小,高度h上升加快,最上一层底面积最小,h上升速度最快,故选C.【点睛】此题主要考查函数图像的识别,解题的关键是根据题意找到对应的函数图像.5.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022A.甲B.乙C.丙D.丁【答案】B【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选B.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.6.一次函数y=kx+b(k0,b0)的图象可能是()A.B.C.D.【答案】C【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k0,∴一次函数y=kx+b的图象经过第二、四象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一象限.故答案为C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.某青年排球队12名队员的年龄情况如下表:年龄1819202122人数1xy22其中x>y,中位数为20,则这个队队员年龄的众数是()A.3B.4C.19D.20【答案】C【解析】【分析】先求出x+y=7,再根据xy,由众数的定义即可求出这个队员年龄的众数.【详解】解:依题意有x+y=12−1−2−2=7,∴y=7-x∵xy,∴x7-x∴3.5x∵x为整数∴x≥4,∴这个队队员年龄的众数是19.故选C.【点睛】本题主要考查了中位数,众数,掌握中位数,众数是解题的关键.8.已知A(﹣13,y1)、B(﹣12,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【答案】C【解析】【分析】利用一次函数图象上点的坐标特征可求出y1,y2,y3的值,比较后可得出结论.【详解】∵A(13,y1)、B(12,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,∴y1=1+b,y2=32+b,y3=﹣3+b.∵﹣3+b<1+b<32+b,∴y3<y1<y2.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y1,y2,y3的值是解题的关键.9.如图,正方形ABCD的边长为10,8AGCH,6BGDH,连接GH,则线段GH的长为()A.835B.22C.145D.1052【答案】B【解析】【分析】延长DH交AG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【详解】解:延长DH交AG于点E∵四边形ABCD为正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中AGCHBADCBGDH∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD为直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中ADEDCHADDCDAECDH∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-
本文标题:2020人教版数学八年级下册《期末考试试卷》及答案
链接地址:https://www.777doc.com/doc-6434613 .html