您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 沪科版八年级数学上册教案《一次函数》
《一次函数》教学设计第1课时《正比例函数的图象和性质》教学目标:1.认识正比例函数的意义,掌握正比例函数解析式的特点;2.理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题;3.经历利用正比例函数图象直观分析正比例函数性质的过程,体会数形结合的思想方法和研究函数的方法,形成合作交流、独立思考的学习习惯.教学重点:认识正比例函数的意义,掌握正比例函数解析式的特点。教学难点:理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题。教学过程:一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min;旋转两圈,表示时间过了2min……那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?二、合作探究探究点一:一次函数与正比例函数【类型一】一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y=-x-4;(2)y=5x2-6;(3)y=2πx;(4)y=-x2;(5)y=1x;(6)y=8x2+x(1-8x).解析:首先看每个函数的表达式能否变形转化为y=kx+b(k≠0,k、b是常数)的形式,如果x的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b=0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数;(2)不是一次函数,也不是正比例函数;(3)是一次函数,也是正比例函数;(4)是一次函数,也是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.【类型二】根据一次函数与正比例函数的定义求字母的值已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数;(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.探究点二:正比例函数的图象和性质【类型一】正比例函数的图象已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是()解析:将x=-1,y=-2代入正比例函数y=kx(k≠0)中,求出k的值为2,即可根据正比例函数的性质判断出函数的大致图象,故选C.方法总结:本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k0时,图象过第一、三象限;当k0时,图象过第二、四象限.【类型二】正比例函数的性质已知正比例函数y=-kx的图象经过第一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1x3x2,则y1,y2,y3的大小关系为()A.y1y3y2B.y1y2y3C.y1y3y2D.y3y2y1解析:由y=-kx的图象经过第一、三象限,可知-k0即k0,∴k-20.由正比例函数的性质可知,y=(k-2)x的函数值y随x的增大而减小,则由x1x3x2得y1y3y2.故选C.方法总结:正比例函数y=kx(k≠0)的函数值y随x的变化情况由k的符号决定.k0时,y随x的增大而增大;k0时,y随x的增大而减小.探究点三:两点法画正比例函数的图象画出函数y=-2x的图象.解析:当x=0时,y=0;当x=1时,y=-2.经过原点O(0,0)和点A(1,-2)作直线,则这条直线就是函数y=-2x的图象.解:如图所示.方法总结:作函数图象的一般步骤:列表,描点,连线,正比例函数的图象是经过原点的直线,只需再另外找一点就可作出图象.三、板书设计正比例函数的图象和性质教学反思:本节内容第一次涉及一个具体的函数的学习和研究,要让学生体会研究函数的方法步骤和知识结构,因此,本课的教与学的活动,要学生有比较清醒的方案意识.教学中随着一环扣一环的提问、练习、点拨,突出教学目标.通过观察—比较—交流—归纳,利用图象和解析式的统一化抽象为具体,降低了难度,突破了正比例函数的性质这一难点.让学生进行课堂小结,不仅使学生从总体上把握知识,强化知识的理解和记忆,还培养了学生良好的个性和思维品质.第2课时《一次函数的图象和性质》教学设计教学目标:1.理解和掌握一次函数解析式的特点及意义,掌握一次函数y=kx+b(k、b为常数,k≠0)的性质,能根据k与b的值说出函数的有关性质;2.会用描点法和平移的方法画一次函数图象,理解和掌握截距的概念;3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力;通过类比的方法学习一次函数,体会数学研究方法的多样性.教学重点:理解和掌握一次函数解析式的特点及意义,掌握一次函数y=kx+b(k、b为常数,k≠0)的性质,能根据k与b的值说出函数的有关性质。教学难点:会用描点法和平移的方法画一次函数图象,理解和掌握截距的概念。教学过程:一、情境导入问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.当向上登高0.5km时,他们所在位置气温为多少?分析:从大本营向上登高,当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为y=15-6x(x≥0).当然,这个函数也可表示为y=-6x+15(x≥0).当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.二、合作探究探究点一:一次函数的图象【类型一】画一次函数的图象作出一次函数y=12x+1的图象,并根据图象回答下列问题:(1)当x=3时,y=________;当y=-32时,x=________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是________;(3)当y0时,x________.解析:作y=12x+1的图象,取(0,1),(-2,0)两点,已知x代入解析式求y,已知y代入解析式求x.列表如下:x0-2y=12x+110描点、连线,y=12x+1的图象如下图:(1)当x=3时,y=2.5;当y=-32时,x=-5;(2)图象与x轴的交点坐标是(-2,0),与y轴的交点坐标是(0,1);(3)当y0时,x-2.方法总结:一次函数的图象y=kx+b是与坐标轴相交的直线,只需描出点(0,b),(-bk,0)就可以作出图象.【类型二】一次函数图象的平移(1)将正比例函数y=-6x的图象向上平移,则平移后所得图象对应的函数表达式可能是________(写出一个即可).(2)将直线y=2x向右平移1个单位后所得图象对应的函数表达式为()A.y=2x-1B.y=2x-2C.y=2x+1D.y=2x+2解析:(1)y=-6x的图象向上平移可得到y=-6x+b(b0),例如y=-6x+1(答案不唯一);(2)y=2x的图象向右平移1个单位后所得图象对应的函数表达式为y=2(x-1),即y=2x-2.故选B.方法总结:(1)上下平移:一次函数y=kx+b的图象可以看作由直线y=kx沿y轴平移|b|个单位长度得到的(当b>0,向上平移;当b<0,向下平移);(2)左右平移:直线y=kx+b向左平移m(m0)个单位得到直线y=k(x+m)+b,向右平移m(m0)个单位长度得到直线y=k(x-m)+b.探究点二:一次函数的性质【类型一】一次函数图象的性质已知一次函数y=(6+3m)x+(n-4).(1)m为何值时,y随x的增大而减小?(2)m、n为何值时,函数图象与y轴的交点在x轴的下方?(3)m、n为何值时,函数图象过原点?解析:(1)因为k0时,y随x的增大而减小,故6+3m0;(2)要使直线与y轴的交点在x轴的下方,必有6+3m≠0,同时n-40;(3)直线过原点是正比例函数的特征,即6+3m≠0且n-4=0.解:(1)依题意,得6+3m0,即m-2.故当m-2时,y随x的增大而减小;(2)依题意,得6+3m≠0,n-40.解得n4且m≠-2.故当m≠-2且n4时,函数图象与y轴的交点在x轴的下方;(3)依题意,得6+3m≠0,n-4=0.解得n=4且m≠-2.故当m≠-2且n=4时,函数图象过原点.方法总结:一次函数y=kx+b(k≠0)中,k的符号决定直线上升或下降,b的符号决定直线与y轴的交点位置,在考虑b的值时,同时要考虑k≠0这一隐含条件,在利用一次函数的性质解决问题时,常常结合方程和不等式求解.【类型二】一次函数y=kx+b中k、b符号的确定两个一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的图象可能是()解析:解此类题应根据k,b的符号从而确定y=kx+b图象的位置或根据图象确定k,b的符号.A选项中,由y1的图象知a0,b0,则y2的图象应过第一、二、四象限,故A错,C对;B选项中,由y1的图象知a0,b0,则y2的图象应过第一、二、三象限,故B错;D选项中,由y1的图象知a0,b0,则y2的图象应过第一、三、四象限,故D错.故选C.方法总结:对于两种不同函数的图象共存同一坐标系问题,一般常假设某一图象正确,然后根据相同字母系数的符号的不变性,来判定另一图象是否正确,进而解决问题.三、板书设计一次函数的图象和性质图象:一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到(当b0时,向上平移;当b0时,向下平移).性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.教学反思:经历对一次函数图象变化规律的探究过程,学会解决一次函数问题的一些基本方法和策略,在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想,通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.第3课时《用待定系数法求一次函数的解析式》教学目标:1.理解和掌握用待定系数法求一次函数的解析式,了解待定系数法的思维方式与特点;(重点)2.明确两个条件确定一个一次函数、一个条件确定一个正比例函数的基本事实;3.通过一次函数图象和性质的研究,体会数形结合法在解决问题中的作用,并能运用性质、图象及数形结合法解决相关函数问题.(难点)教学重点:理解和掌握用待定系数法求一次函数的解析式,了解待定系数法的思维方式与特点教学难点:通过一次函数图象和性质的研究,体会数形结合法在解决问题中的作用,并能运用性质、图象及数形结合法解决相关函数问题教学过程:一、情境导入我们在画函数y=2x,y=3x-1时,至少应选取几个点?为什么?前面我们学习了给定一次函数解析式,可以说出它的性质,反过来给出有关的信息,能否求出解析式呢?一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?二、合作探究探究点:用待定系数法求一次函数的解析式【类型一】根据两组x,y的值确定一次函数的解析式已知一次
本文标题:沪科版八年级数学上册教案《一次函数》
链接地址:https://www.777doc.com/doc-6435788 .html