您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 最新人教版28.1锐角三角函数(第1课时)课件ppt
ABC“斜而未倒”BC=5.2mAB=54.5m意大利的伟大科学家伽俐略,曾在斜塔的顶层做过自由落体运动的实验..α问题1为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?这个问题可以归结为:在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB的长.ABC思考:你能将实际问题归结为数学问题吗?情境探究根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,即.21ABBC斜边的对边AABC在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB的长.可得AB=2BC=70m,即需要准备70m长的水管。在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21ABC50m30m,21'''ABCBA斜边的对边B'C'AB'=2B'C'=2×50=10022212BCBCABBC即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于22如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比,你能得出什么结论?ABBCABC21综上可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.22一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?在图中,由于∠C=∠C'=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C'''''BAABCBBC''''BACBABBC在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么与有什么关系.你能解释一下吗?ABBC''''BACB探究ABCA'B'C'如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记住sinA即caAA斜边的对边sin当∠A=30°时,我们有2130sinsinA当∠A=45°时,我们有2245sinsinAABCcab对边斜边在图中∠A的对边记作a∠B的对边记作b∠C的对边记作c正弦函数注意sinA是一个完整的符号,它表示∠A的正弦,记号里习惯省去角的符号“∠”;sinA没有单位,它表示一个比值,即直角三角形中∠A的对边与斜边的比;sinA不表示“sin”乘以“A”。1.判断对错:A10m6mBC1)如图(1)sinA=()(2)sinB=()(3)sinA=0.6m()(4)SinB=0.8()ABBCBCAB√√××sinA是一个比值(注意比的顺序),无单位;2)如图,sinA=()BCAB×牛刀小试2.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sinA的值()A.扩大100倍B.缩小C.不变D.不能确定C11003.如图ACB37300则sinA=______.12牛刀小试例1如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.解:(1)在Rt△ABC中,5342222BCACAB因此53sinABBCA54sinABACB(2)在Rt△ABC中,135sinABBCA125132222BCABAC因此1312sinABACBABCABC34135例题讲解1.根据右图,求sinA和sinB的值.ABC35解:在Rt△ABC中,22225334ABACBC因此:3334sin3434BCAAB5534sin1734ACBAB跟踪练习2.根据下图,求sinA和sinB的值.ABC125解:在Rt△ABC中,2222125119BCABAC因此:119sin12BCAAB5sin12ACBAB跟踪练习3.根据下图,求sinB的值.ABCn解:在Rt△ABC中,2222ABBCACmn因此:222222sinACnnmnBABmnmnm跟踪练习例2:如图,Rt△ABC中,∠C=90度,CD⊥AB,图中sinB可由哪两条线段比求得。DCBA解:在Rt△ABC中,sinACBAB在Rt△BCD中,sinCDBBC因为∠B=∠ACD,所以sinsinADBACDAC例题讲解求一个角的正弦值,除了用定义直接求外,还可以转化为求和它相等角的正弦值。如图,∠C=90°CD⊥AB.sinB可以由哪两条线段之比?若AC=5,CD=3,求sinB的值.┌ACBD解:∵∠B=∠ACD∴sinB=sin∠ACD在Rt△ACD中,AD=sin∠ACD=∴sinB=222235=--CDAC54=ACAD54=4跟踪练习本节课你有什么收获呢?回味无穷12小结拓展1.锐角三角函数定义:2.sinA是∠A的函数.ABC∠A的对边┌斜边斜边∠A的对边sinA=3.只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步.Sin300=sin45°=22sin60°=32如图,Rt△ABC中,直角边AC、BC小于斜边AB,所以0<sinA<1,0<sinB<1,sinBCAABsinACBAB如果∠A<∠B,则BC<AC,那么0<sinA<sinB<1ABC<1<1思考发现1.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的().A.151115...15434BCDBACB3.如图:在Rt△ABC中,∠C=90°,AB=10,sinB=,BC的长是.532.若sin(65°-∠A)=,则∠A=2220°8补充练习O4、如图2:P是平面直角坐标系上的一点,且点P的坐标为(3,4),则sin=P(3,4)54xAy补充练习5、如图,在△ABC中,AB=CB=5,sinA=,求△ABC的面积。54BAC55补充练习
本文标题:最新人教版28.1锐角三角函数(第1课时)课件ppt
链接地址:https://www.777doc.com/doc-6436792 .html