您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 箱子地摆放问题数学建模
实用文档箱子的摆放策略摘要本文针对箱子的摆放的优化铺设问题,采用了循环嵌套式算法,建立了利用率最优化的整数规划模型,使用LINGO、MATLAB求解,并用Excel进行画图,实现了箱子最优摆放与评价。对于问题一,建立在不允许箱子超出底边的情况下,所能摆放最多箱子的数学模型。借助于循环嵌套式算法,采用改进后的由外至内逐步优化的模型:首先对各边的外层进行摆放,使其边界利用率最高,再对内层剩余矩形空间进行摆放,一直循环,至内部剩余空间无法放入箱子为止。用MATLAB编程、求解分析:以此模型摆放,第一种箱子个数为16、第二种箱子个数为4、第三种箱子个数为20。对于问题二,建立在允许箱子超出上、左、右边的情况下,所能摆放最多箱子的数学模型。建立由下至上逐步优化模型:以底边为基,将其两边各向外扩充半个长边的长度,先对底边进行摆放,使其边界利用率最高,再向上堆叠,使箱子间无空隙,使面积利用率最大,至上侧最多超出半个箱子边长为止。用lingo编程、求解分析:以此模型摆放,第一种箱子个数为23、第二种箱子个数为8、第三种箱子个数为28。对于问题三,我们采用左右对称,箱子横放,向上堆叠,左、右、上边各超出少许的方案。引入箱子个数、稳定性两个指标,通过线性加权评价的方式,对此方案与模型一进行评价分析。得出了在在实际情况中,当考虑不同权重的综合指数时,模型一与模型三的摆放方式各有优劣性的结论。关键词:利用率最高循环嵌套式算法线性加权评价实用文档一、问题重述叉车是指对成件托盘货物进行装卸、堆垛和短距离运输作业的各种轮式搬运车辆。如何摆放箱子,使得叉车能将最多的货物从生产车间运输至仓库是众多企业关心的问题。现将箱子的底面统一简化为形状、尺寸相同的长方形,叉车底板设定为一个边长为1.1米的正方形。要求建立一个通用的优化模型,在给定长方形箱子的长和宽之后,就能利用这个模型算出使得箱子数量最多的摆放方法。本题需要解决的问题有:问题一:在不允许箱子超出叉车底板,也不允许箱子相互重叠的情况下,构建一个优化模型,并根据题目中提供的三种型号箱子的数据,确定可以摆放的个数及摆放示意图。问题二:假设箱子密度均匀,允许箱子在正方形底板的上方,左边,右边部分超出底板,但不至于掉落出叉车底板。重建优化模型,考虑问题一中三种规格的箱子的摆放方式。问题三:在不允许箱子相互重叠的条件下,另外设计出一种摆放方案,再将设计的方案与问题一中的摆放方案的进行优劣性对比。二、模型假设1.假设箱子的密度都是均匀的,若允许箱子在正方形底板的上方,左边,右边部分超出底板(下方紧靠叉车壁,不能超出),只要重心不超出底板,就不至于掉落出叉车底板。2.假设箱子表面光滑,箱子间摆放无缝隙,即把箱子当做小矩形进行分析。3.假设叉车的承重能力无限大,能承载足够多的箱子。三、符号说明符号解释说明a小矩形箱的长b小矩形箱的宽c长边向上叠加的矩形箱个数d宽边向上叠加的矩形箱个数m底边上矩形箱的长边个数n底边上矩形箱的宽边个数sum小矩形的总个数wj摆放指标的权重系数xj摆放指标无量纲化后的数值实用文档四、问题分析本文研究的是在一个边长为1.1的正方形叉车底板上堆放长方体箱子的问题。不同规格的箱子最佳堆放方式是不同的,要尽量多的满足各种型号箱子摆放数量最多,就要设计一个通用的优化方案。问题一要求在既不允许箱子超出叉车底板,也不允许箱子相互重叠的情况下考虑货物的堆放方案。首先,借鉴于循环嵌套式的启发式算法[1],列出在不超出边际的情况下,设计能够最大限度地使用正方形底板边长的MATLAB程序,求解得到最优的长宽组合及所有小矩形的个数。再结合矩形Packing问题的贪心算法进行占穴动作,以正方形边长的利用率最大化为优化目标,得到最终的摆放方案,并利用EXCEL作出示意图。问题二要求在可超出正方形底板的上方、左边、右边的情况下重新考虑问题一。为最大限度的扩大可使用面积,先将正方形底板靠近叉车壁的一边分别向左、向右扩宽箱子长的一半,再将其相对的边向上扩长箱子长的一半,得到本问的最大可用面积(矩形)。类比于第一问的分析,设计LINGO算法先求解靠近叉车壁的一边最优的长宽配比。为避免内部出现空隙,以该边为基,直接向上堆叠,得到最优方案并以EXCEL作出示意图。问题三要求在不允许箱子相互重叠的条件下,重新设计出一种摆放方案。首先,以同样的方式将矩形箱摆放进叉车,允许小矩形箱少部分超出叉车底板,不允许出现矩形箱旋转情况,使摆放不存在缝隙且左右对称。再使用线性加权综合指数法,设定摆放个数和稳定性的指标,对模型三和模型一的摆放方式进行优劣性对比。五、模型的建立与求解问题一:模型一:由外至内逐步优化模型基于循环嵌套式算法,采用一种简化的模型,来解决二维矩形排列问题。在边长为1.1的正方形中,放入ab的小矩形(a为长,b为宽),使放入的数量最多。其等价于,利用a和b的进行各种组合,使得大正方形各个边方向上的利用率尽可能高,即在边上对a和b进行组合优化。合理布局后,我们再对剩余部分进行填充,结合矩形Packing问题的贪心算法进行占穴动作[1],得到最终摆放方案。建立边长最大限度使用的目标函数:minz=1.1-a*m-b*n.其中,m、n分别表示小矩形的长边和宽边在大正方形的某边的个数。利用LINGO程序求解。实用文档(1)第一种箱子:a=0.3b=0.24L=1.1利用lingo程序求解,得:m=2,n=2摆放示意图如图1所示图1(2)第二种箱子:a=0.6b=0.4L=1.1利用lingo程序求解,得:m=1,n=1摆放示意图如图2所示:图2(3)第三种箱子:a=0.3b=0.2L=1.1利用lingo程序求解,得:m=1,n=4摆放示意图如图3所示:实用文档图3模型二:由外至内逐步优化模型改进版因为模型一过程复杂,不利于推广,我们进行了新模型的构建,即基于循环嵌套式算法[2]的改进版模型来解决二维矩形排列问题。在边长为1.1的正方形中,放入ab的小矩形(a为长,b为宽),使放入的数量最多。其等价于,利用a和b的进行各种组合,使得大正方形各个边方向上的利用率尽可能高,即在边上对a和b进行组合优化。对外层排列完成后,对内部剩余矩形面积进行排放,如此循环,至剩余面积无法放入小矩形。这种模型不断循环,利于推广。图4参照流程图设计MATLAB程序,求解每层小矩形长边、宽边的个数m和n,以及所有小矩形的个数sum。模型求解:(1)第一种箱子:a=0.3b=0.24L=1.1利用MATLAB程序求解,得:m=2,n=2,sum=16因为该算法的思想为:由外向内的每层都分为对称的4部分,每部分都实用文档为相同形状矩形,因此此方案只有一层,摆放示意图如图5所示:图5(2)第二种箱子:a=0.6b=0.4L=1.1利用MATLAB程序求解,得:m=1,n=1,sum=4摆放示意图如图6所示:图6(3)第三种箱子:a=0.3b=0.2L=1.1利用MATLAB程序求解,得:m=[11],n=[41],sum=24摆放示意图如图7所示:图7实用文档问题二:模型三:由下至上逐步优化模型(1)允许箱子在正方形底板的上方,左边,右边部分超出底板。因此,为了追求面积最大化,在正方形底板的左右侧各扩充a/2,使其变成矩形。(2)正方形底板的下边不可超出。考虑以下边为基础,优化目标是使其利用率尽可能高,即先在扩充后的底边对a和b进行组合优化。图8参照图8设计LINGO程序,将目标函数设为:maxf=m*c+n*d得到靠近叉车壁的小矩形长边、宽边的个数m和n,以及长边、宽边向上累加的小矩形的个数c和d。我们再对剩余的上部进行填充:以整体面积利用率为优化目标(面积利用率越大,即摆放在扩展后的矩形底板上的小矩形越多),我们采用紧密相连的方案,以下边为基,逐个向上累加。模型求解:(1)第一种箱子:a=0.3b=0.24L=1.1利用LINGO程序求解,得:m=3,n=2,c=5,d=4摆放示意图如图9所示:图9实用文档注:最外围实线表示最大可能利用面积。(2)第二种箱子:a=0.6b=0.4L=1.1利用LINGO程序求解,得:m=2,n=1,c=3,d=2摆放示意图如图10所示:图10(3)第三种箱子:a=0.3b=0.2L=1.1利用LINGO程序求解,得:m=4,n=1,c=6,d=4摆放示意图如图11所示:图11问题三:1.摆放方式的简述我们在装箱个数不一定相等的前提下,从叉车底板下方往上使每个小矩形箱按同样的方式摆放进叉车,允许小矩形箱按问题二的要求在允许箱子在正方形底板的上方,左边,右边少部分超出底板但不至于掉落出叉车底板,不允许出现矩形箱旋转情况,使摆放不存在缝隙且左右对称。以此为我们问题三的摆放方式。下图图12为问题三型号1矩形箱的摆放方式(4X5),左右对称,两边各超出底板0.05米,上方超出底板0.1米。下图图13为问题三型号2矩形箱的摆放方式(2X6),左右对称,两边各超出底板0.05米,上方超出底板0.1米。下图图14为问题三型号3矩形箱的摆放方式(4X6),左右对称,两边各超出底板0.05米,上方超出底板0.1米。实用文档图12图13图142.线性加权综合法的分析(1)数据的采集和计算分别以问题一和问题三的三个小矩形箱的摆放方式为研究对象,其测评数据采自这6个摆放方式的摆放个数及摆放方式的稳定性。经查阅文献及模型简化[3],我们认为,叉车的稳定性可以重心偏移量来衡量,即为每个矩形箱重心的位置到叉车底板中心位置距离的平均值。因此,在六个摆放方式中,我们以叉车底板中心位置为原点建立直角坐标系,在每个矩形箱都是密度均匀的前提下,分别确定每个矩形箱重心(即矩形中点)的坐标,计算求得重心偏移量的值。第一题的数据汇总见表1;第三题的数据汇总表见表2。表1模型一个数重心偏移量图1160.521697图240.430116图3200.416874表2模型三个数重心偏移量图1200.558854图260.441950图3240.431873(2)数据的一致化与无量纲化处理[4]12实用文档在上表中的评价指标1x(摆放个数)属于“极大型指标(总是期望指标的取值越大越好)”,2'x(重心偏移量)属于“极小型指标(总是期望指标的取值越小越好)”,故首先应通过转化使评价指标类型一致化。经过考虑,我们此次采用倒数法将极小型化为极大型,即将重心偏移量指标的数据改为其倒数用于计算,得到的数据即为稳定性指标。倒数法:1'jjxx。在上表中的评价指标1x(摆放个数)、2x(稳定性)之间,存在着各自不同的单位和数量级,使得这些指标之间存在着不可公度性,这就为综合评价带来了困难。在数学上,我们常常采用数据的无量纲化处理来使指标数据标准化,常用方法有:标准差方法、极值差方法、功效系数法。通过比较,此次我们采用标准差方法进行无量纲化处理。其中2121111,[()](1,2,)nnjijjijijiixxsxxjnn…,m。显然指标'(1,2,m)ijxi…,n,j=1,2,?,的均值和均方差分别为0和1,即'[0,1]ijx是无量纲的指标,称之为ijx的标准观测值。第一题的数据处理见表3;第二题的数据处理见表4。表3问题一个数稳定性图10.134030115-1.0962202图2-1.474331270.68481106图30.6701505771.00708880表4问题三个数稳定性图10.670150577-1.65235688图2-1.206271030.413142149图31.2062710390.643535103(3)权重系数的讨论权重系数[5]是指一个整体被分解成若干因素(指标)时,用来表示每个因素在整体中所占大小的数字,简称为权重。指标的权重反映了该指标在整体中的相对重要程度;同时,也是评价主体对该指标价值认识程度的反应,即重要的指标,权重大些;反之,则小些。常见的权重系数确定方法有:层次分析法(AHP)、达尔菲法(Delphi)、主成分分析法、熵值法和均方差法等。这些方法求解较繁琐且计算量大,在本题中不太符合。实用文档由于矩形箱的
本文标题:箱子地摆放问题数学建模
链接地址:https://www.777doc.com/doc-6457678 .html