您好,欢迎访问三七文档
1本章总结本章主要讲述的知识点有相交线与平行线。其中相交线当中,两线相交,共产生两对对顶角,还引入了邻补角的概念。相交的一种特殊情况是垂直,两条直线交角成90。经过直线外一点,作直线的垂线,有且只有一条;点到直线上各点的距离中,垂线段最短。两条直线的另外一种关系是平行,平行就是指两条直线永不相交。平行线之间的距离处处相等。过直线外一点,作已知直线的平行线,有且只有一条。当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等;两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足1=2(或者3=4;5=7;6=8),就可以说AB//CD平行线判定定理2:内错角相等,两直线平行如图所示,只要满足6=2(或者5=4),就可以说AB//CD平行线判定定理3:同旁内角互补,两直线平行如图所示,只要满足5+2=180(或者6+4=180),就可以说AB//CD平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行这是两直线与第三条直线相交时的一种特殊情况,由上图中1=2=90就可以得到。平行线判定定理5:两条直线同时平行于第三条直线,两条直线平行2知识点1.相交线同一平面中,两条直线的位置有两种情况:相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:1,2,3,4;邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3。所以,对顶角相等例题:1.如图,31=23,求1,2,3,4的度数。2.如图,直线AB、CD、EF相交于O,且ABCD,127,则2_______,FOB__________。CEA2OB1FD垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。如图所示,图中ABCD,垂足为O。垂直的两条直线共形成四个直角,每个直角都是90。例题:如图,ABCD,垂足为O,EF经过点O,1=26,求EOD,2,3的度数。(思考:EOD可否用途中所示的4表示?)3垂线相关的基本性质:(1)经过一点有且只有一条直线垂直于已知直线;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;(3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么?*线段的垂直平分线:垂直且平分一条线段的直线,叫做这条线段的垂直平分线。如何作下图线段的垂直平分线?2.平行线:在同一个平面内永不相交的两条直线叫做平行线。平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。如上图,直线a与直线b平行,记作a//b3.同一个平面中的三条直线关系:三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点。(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决;4例题:如图,直线AB,CD,EF相交于O点,DOB是它的余角的两倍,AOE=2DOF,且有OGOA,求EOG的度数。(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。)如图所示,直线AB,CD平行,被第三条直线EF所截。这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;指出上图中的同位角,内错角,同旁内角。两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等;两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。如上图,指出相等的各角和互补的角。例题:1.如图,已知1+2=180,3=180,求4的度数。52.如图所示,AB//CD,A=135,E=80。求CDE的度数。平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足1=2(或者3=4;5=7;6=8),就可以说AB//CD平行线判定定理2:内错角相等,两直线平行如图所示,只要满足6=2(或者5=4),就可以说AB//CD平行线判定定理3:同旁内角互补,两直线平行如图所示,只要满足5+2=180(或者6+4=180),就可以说AB//CD平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行这是两直线与第三条直线相交时的一种特殊情况,由上图中1=2=90就可以得到。例题:1.已知:AB//CD,BD平分ABC,DB平分ADC,求证:DA//BCAB12DC342.已知:AF、BD、CE都为直线,B在直线AC上,E在直线DF上,且12,CD,求证:AF。DEF3124ABC6(3)有三个交点当三条直线两两相交时,共形成三个交点,12个角,这是三条直线相交的一般情况。如下图所示:你能指出其中的同位角,内错角和同旁内角吗?三个交点可以看成一个三角形的三个顶点,三个交点直线的线段可以看成是三角形的三条边。(4)没有交点:这种情况下,三条直线都平行,如下图所示:即a//b//c。这也是同一平面内三条直线位置关系的一种特殊情况。例题:如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与CD有怎样的位置关系,为什么?相交线与平行线作业题一.选择题:1.如图,下面结论正确的是()A.12和是同位角B.23和是内错角C.24和是同旁内角12347D.14和是内错角2.如图,图中同旁内角的对数是()A.2对B.3对C.4对D.5对3.如图,能与构成同位角的有()A.1个B.2个C.3个D.4个4.如图,图中的内错角的对数是()A.2对B.3对C.4对D.5对5.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是()A.42138、B.都是10C.42138、或4210、D.以上都不对二.填空1.已知:如图,AOBO,12。求证:CODO。证明:AOBO()AOB90()139012()2390CODO()αBCD231OA82.已知:如图,COD是直线,13。求证:A、O、B三点在同一条直线上。证明:COD是一条直线()12___________()13()__________3_________________________()三.解答题1.如图,已知:AB//CD,求证:B+D+BED=360(至少用三种方法)EABCD2.已知:如图,E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C。2ABECFDHG13.已知:如图,123,,BACDE//,且B、C、D在一条直线上。求证:AEBD//4.已知:如图,CDACBA,DE平分CDA,BF平分CBA,且ADEAED。求证:DEFB//5.已知:如图,BAPAPD18012,。AC12O3DBAE3124BCDDFCAEB9求证:EF6.已知:如图,123456,,。求证:EDFB//FE4AG1B5362CD2.已知:如图,E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C。2ABECFDHG13.已知:如图,123,,BACDE//,且B、C、D在一条直线上。求证:AEBD//4.已知:如图,CDACBA,DE平分CDA,BF平分CBA,且ADEAED。求证:DEFB//AB1EF2CPDAE3124BCDDFCAEB105.已知:如图,BAPAPD18012,。求证:EF6.已知:如图,123456,,。求证:EDFB//FE4AG1B5362CDAB1EF2CPD
本文标题:相交线与平行线讲义
链接地址:https://www.777doc.com/doc-6470789 .html