您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 2015-2016九年级数学上册 22.2 二次函数与一元二次方程课件1 (新版)新人教版
1、学习二次函数与一元二次方程的关系2、会用一元二次方程解决二次函数图象与x轴的交点问题引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题。如:被抛射出去的物体沿抛物线轨道飞行;抛物线形拱桥的跨度、拱高的计算等.利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,我将和同学们共同研究解决这些问题的方法,探寻其中的奥秘。复习.1、一元二次方程ax2+bx+c=0的根的情况可由确定。>0=0<0有两个不相等的实数根有两个相等的实数根没有实数根b2-4ac2、在式子h=50-20t2中,如果h=15,那么50-20t2=,如果h=20,那50-20t2=,如果h=0,那50-20t2=。如果要想求t的值,那么我们可以求的解。15200方程问题1:如图,以40m/s的速度将小球沿与地面成30度角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?若能,需要多少时间?(4)球从飞出到落地要用多少时间?15=20t–5t2h=0ht20=20t–5t220.5=20t–5t20=20t–5t2那么从上面,二次函数y=ax2+bx+c何时为一元二次方程?它们的关系如何?一般地,当y取定值时,二次函数为一元二次方程。如:y=5时,则5=ax2+bx+c就是一个一元二次方程。为一个常数(定值)练习一:如图设水管AB的高出地面2.5m,在B处有一自动旋转的喷水头,喷出的水呈抛物线状,可用二次函数y=-0.5x2+2x+2.5描述,在所有的直角坐标系中,求水流的落地点D到A的距离是多少?解:根据题意得-0.5x2+2x+2.5=0,解得x1=5,x2=-1(不合题意舍去)答:水流的落地点D到A的距离是5m。分析:根据图象可知,水流的落地点D的纵坐标为0,横坐标即为落地点D到A的距离。即:y=0。ADB0yx-11、二次函数y=x2+x-2,y=x2-6x+9,y=x2–x+1的图象如图所示。(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+x-2=0,x2-6x+9=0有几个根?验证一下一元二次方程x2–x+1=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?22yxx269yxx21yxx答:2个,1个,0个.,2,2.2无实数根个相等的根个根边观察边思考b2–4ac>0b2–4ac=0b2–4ac<0OXY2、二次函数y=ax2+bx+c的图象和x轴交点,则b2-4ac的情况如何。.二次函数与一元二次方程.0,0,,)1(,,20022的一个根方程就是因此函数的值是时的横坐标是公共点轴有公共点与如果抛物线的图象可知从二次函数一般地cbxaxxxcbxaycbxayxxxxx2、二次函数y=ax2+bx+c的图象和x轴交点情况如何?(b2-4ac如何)(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac0b2–4ac=0b2–4ac0思考:若抛物线y=ax2+bx+c与x轴有交点,则b2-4ac.≥0练习:看谁算的又快又准。1.不与x轴相交的抛物线是()Ay=2x2–3By=-2x2+3Cy=-x2–2xDy=-2(x+1)2-32.如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=__,此时抛物线y=x2-2x+m与x轴有_个交点.3.已知抛物线y=x2–8x+c的顶点在x轴上,则c=__.D11164.抛物线y=x2-3x+2与y轴交于点____,与x轴交于点____.(0,2)(1,0)(2,0)5.如图,抛物线y=ax2+bx+c的对称轴是直线x=-1,由图象知,关于x的方程ax2+bx+c=0的两个根分别是x1=1.3,x2=___6.已知抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围()-3.347474747::k0C:Dk0AkBkkk且:且BK≠0b2-4ac≥0B第四象限第三象限 第二象限第一象限 的顶点在抛物线则没有实数根的一元二次方程关于顶点坐标为则其顶点经过原点抛物线个个 D.个 C.个 轴的交点个数有与抛物线....).(,0)3(.__________,33)2(321.0.).(32)1(22222DCBAnxynxxmxmyBAxxyxxmxxC)43,21(A.),0,1(,)2(;,:)1(.2.422点坐标求为点坐标且、轴有两个公共点若该二次函数的图象与轴总有公共点该二次函数的图象与对于任意实数求证已知二次函数BABAxxmmxymx.,02402,0:)1(9)(22222轴总有公共点抛物线与取何值不论得令证明xmmxymmmmx)0,2(1,20)1)(2(,02120)0,1()2(212222212点坐标为 即上在抛物线BmmmmmxyAmmmmmx?的面积等于)几秒后(的函数关系式;与)写出(同时出发:、分别从、,如果时间为运动的面积为的速度移动,设以的边向点开始沿从点点的速度移动以边向点开始沿从点点中在mcmcPBQxyBAQPxsyPBQscmCBCBQscmBABAPBABC22821/2,/1,90,.5.,14)3(;,)2(;)1(..,1,.,2.,),8,0(,2.62的值求时的面积等于当四边形轴平行于为何值时当的值求秒的运动时间,设点、连接运动沿出发从点个单位长度的速度以每秒点同时运动沿出发速度的速度从个单位长度的以每秒动点交抛物线于另一点轴平行于直线轴交于点与两点、轴交于与已知抛物线tPQBCyPQtatPCBPQBAAQDCCPCxDCDyBAxaaxyx6.某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料长(图中所有黑线的长度和)为10米.当x等于多少米时,窗户的透光面积最大?最大面积是多少?答:略。)(时,)(当得消去由又,依题意得解:设窗户的面积为米)(米最大2222212256553653255221462510424653´´´SxxxxSy①②②xyS①xyyxxxsppp●请你把这节课你学到了东西告诉你的同桌,然后告诉老师?交点b2-4ac0b2-4ac0b2-4ac=0两个交点没有交点一个交点二次函数与x轴的交点当二次函数y=ax2+bx+c中y的值确定,求x的值时,二次函数就变为一元二次方程。即当y取定值时,二次函数就为一元二次方程。二次函数与一元二次方程的关系二次函数与x轴的交点的横坐标是一元二次方程的解讨论这节课应有以下内容:1、二次函数y=x2+x-6的图象与x轴交点横坐标是()A:2和-3B:-2和3C:2和3D:-2和32、已知实数s、t,且满足s2+s-2006=0,t2+t-2006=0,那么二次函数y=x2+x-2006的图象大致是()ABCDAB3、已知抛物线y=x2+mx-2m2(m≠0)求证:该抛物线与x轴有两个不同的交点。证明:∵b2-4ac=m2-4×1×(-2m2)=9m2∵m≠0∴9m20即b2-4ac0∴抛物线与x轴有两个不同的交点你会利用二次函数的图象求一元二次方程2x2-4x+1=0的近似根吗?1.二次函数的图象如图4所示,则下列说法不正确的是()2(0)yaxbxcaA240bacB0aC0cD02ba2.二次函数y=ax2+bx+c的部分对应值如下表:x-3-2-1012345y1250-3-4-30512利用二次函数的图象可知,当函数值y<0时,x的取值范围是().A.x<0或x>2B.0<x<2C.x<-1或x>3D.-1<x<35.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.21855yxx作业课本:p56-57页复习巩固选做题:如图,一位篮球运动员跳起投篮,球沿抛物线y=-x2+3.5运行,然后准确落人篮框内。已知篮框的中心离地面的距离为3.05米。(1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?升华提高体会两种思想:数形结合思想弄清一种关系------函数与一元二次方程的关系如果抛物线y=ax+bx+c与x轴有公共点(x,o),那么x=x就是方程ax+bx+c=0的一个根.2200分类讨论思想一元二次方程ax2+bx+c=0的根二次函数y=ax2+bx+c的图象和x轴交点有两个交点有两个相异的实数根有一个交点有两个相等的实数根没有交点没有实数根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4acb2-4ac0b2-4ac=0b2-4ac0结束寄语•时间是一个常数,但对勤奋者来说,是一个“变数”.•用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍.下课!
本文标题:2015-2016九年级数学上册 22.2 二次函数与一元二次方程课件1 (新版)新人教版
链接地址:https://www.777doc.com/doc-6495330 .html